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Abstract. The asymptotic behaviour of a family of gradient algorithms (including the methods of steepest
descent and minimum residues) for the optimisation of bounded quadratic operators in R

d and Hilbert spaces
is analyzed. The results obtained generalize those of Akaike (1959) in several directions. First, all algorithms
in the family are shown to have the same asymptotic behaviour (convergence to a two-point attractor), which
implies in particular that they have similar asymptotic convergence rates. Second, the analysis also covers the
Hilbert space case. A detailed analysis of the stability property of the attractor is provided.

1. Introduction

The paper generalizes the results presented in [16] to other optimisation algorithms of
the gradient type. We introduce a class of algorithms, called P -gradient algorithms, that
differ by the choice of the length of the step made in the gradient direction. The class
includes in particular the usual steepest-descent algorithm and the method of minimal
residues of Krasnosel’skii and Krein [9, 10]. We show that for a quadratic function,
the worst asymptotic rate of convergence is the same for the whole class of algorithms
considered. It is also true that, expressed in the right framework, all the algorithms in
the class behave in a very similar fashion1. This analysis complements that presented
in [1], [13, 14] and Chapter 7 of [15] which concerns steepest descent. Moreover, the
analysis in [16] directly applies to all algorithms in the class considered, revealing the
asymptotic behaviour for bounded quadratic operators not only in R

d but also in Hilbert
spaces. The worst case behaviour exhibited is fundamental “bottom-line” in the study
of optimisation whose understanding is critical for building more complex and faster
algorithms.

The basic idea is renormalisation, as used throughout [15]. The main result in the
finite dimension case is that for any algorithm in the class, in the renormalised space one
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1 Not all algorithms using the gradient direction belong to that class, which in particular does not include
the spectral-gradient algorithm, see [3], proposed by Barzilai and Borwein in [2]. This method, which has
been found in particular examples to allow significant improvement over standard steepest descent, see [18],
thus requires a separate treatment. The same is true for steepest descent with relaxation or the combination of
steepest descent and Barzilai-Borwein methods, as considered in [19].
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observes convergence to a two-point attractor which lies in the space spanned by the
eigenvectors corresponding to the smallest and largest eigenvalues of the matrix A of
the quadratic operator. The proof for bounded quadratic operators in Hilbert space stems
from the proof for R

d but is considerably more technical. In both cases, as in [1], the
method consists of converting the problem to one containing a special type of operator on
measures on the spectrum of the operator. The additional technicalities arise from the fact
that in the Hilbert space case the measure, which is associated with the spectral measure
of the operator, may be continuous. Another important result concerns bounds on con-
vergence rates, named after Kantorovich, see [7]. For all algorithms in the family consid-
ered, the actual asymptotic rate of convergence, although satisfying Kantorovich bounds,
depends on the starting point and is difficult to predict. This complex behaviour has con-
sequences for the stability of the attractor, which are discussed following the main results.

The family of gradient algorithms we consider, called P -gradient algorithms, is
introduced in Section 2. Renormalisation is presented there, which, together with the
monotonic sequences of Section 2.4, forms the core of the analysis to be conducted. The
main results are presented in Section 3, first for the case H = R

d , then for the Hilbert
space case. They rely on the convergence property of successive transformations of a
probability measure, which is presented in Section 4. Again, the two cases H = R

d and
H a Hilbert space are distinguished, the exposition being much simpler in the former
case. The stability of attractors is discussed in Section 5, only in the more general case
of a Hilbert space, the case H = R

d not allowing for a significant simplification of
the presentation. Finally, Section 6 shows the asymptotic equivalence between several
rates of convergence of gradient algorithms. All proofs and some important lemmas are
collected in an appendix.

2. A family of gradient algorithms

2.1. P -gradient algorithms

Let A be a real bounded self-adjoint (symmetric) operator in a real Hilbert space H with
inner product (x, y) and norm given by ‖x‖ = (x, x)1/2. Assume that A is positive,
bounded below, and denote its spectral boundaries by m and M:

m = inf
‖x‖=1

(Ax, x) , M = sup
‖x‖=1

(Ax, x) ,

with 0 < m < M < ∞. The function to be minimized corresponds to the quadratic
form

f (x) = 1

2
(Ax, x) − (x, y) . (1)

It is minimum at x∗ = A−1y, its directional derivative at x in the direction u is

∇uf (x) = (Ax − y, u) .

The direction of steepest descent at x is −g, with g = g(x) the gradient at x, namely
g = Ax−y. The minimum of f in this direction is obtained for the optimum step-length



Asymptotic behaviour of a family of gradient algorithms in R
d and Hilbert spaces 411

γ = (g, g)

(Ag, g)
,

which corresponds to the usual steepest-descent algorithm. One iteration of the steepest
descent algorithm is thus

xk+1 = xk − (gk, gk)

(Agk, gk)
gk , (2)

with gk = Axk − y and x0 some initial element in H. We define more generally the
following class of algorithms.

Definition 1. Let P(·) be a real function defined on [m, M], infinitely differentiable,
with Laurent series

P(z) =
∞∑

−∞
ckz

k , ck ∈ R for all k ,

such that 0 <
∑∞

−∞ cka
k < ∞ for a ∈ [m, M]. The k-th iteration of a P -gradient

algorithm is defined by

xk+1 = xk − γkgk (3)

where the step-length γk minimizes (P (A)gk+1, gk+1) with respect to γ , with gk+1 =
g(xk+1) = g(xk − γgk).

Direct calculation gives

γk = (P (A)Agk, gk)

(P (A)A2gk, gk)
. (4)

Note that AP(A) = P(A)A and that the denominator and numerator of γk are linear in
P(A). Also, γk is scale-invariant in P(A) and γk ∈ [1/M, 1/m].

Taking P(A) = A−1 gives the steepest-descent algorithm. Choosing P(A) = I , the
identity operator, is equivalent to choosing the step-length that minimizes the norm of the
gradient gk+1 at the next point.We then obtain the method of minimal residues introduced
in [10] for the solution of linear equations. For any fixed α ∈ (0, 1), choosing γk that min-
imizes αf (xk −γgk)+ (1 − α)(g(xk − γgk), g(xk − γgk)) with respect to γ also gives
an algorithm in the family. More generally, we show below how to construct P -gradient
algorithms, with P(·) a polynomial in A, using evaluations of f (·) and g(·) only.

2.2. Practical construction when P is a polynomial

We consider the case where P(A) = Aq for some integer q ≥ −1. (As mentioned, the
cases q = −1 and q = 0 respectively correspond to the methods of steepest-descent and
minimal residues.) The extension to P(·) polynomial in A is straightforward (including
also linear combinations with A−1), using (4).

The minimisation of (P (A)gk+1, gk+1), or the calculation of γk in (4), requires the
calculations of terms of the form (Ang, g), with n = q or n = q + 1, q + 2. As shown
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below, they are easily obtained from evaluations of g(·) at different points. Notice that
this construction implies that one iteration of the algorithm will require several evalua-
tions of g(·). The construction proposed below is not necessarily the most economical
one, and evaluations of f (·) and g(·) at different points could be combined to provide
more efficient evaluations of terms (Ang, g). Our objective here is simply to show that
the family of algorithms considered in the paper is not of purely theoretical interest,
and that other algorithms than the steepest-descent and minimal residues could also be
considered in practice.

Let (Ang, g) be the term to be evaluated, n ≥ 1, with g = g(x) the gradient at the
current point x. Define x(0) = x and

x(i+1) = x(i) − βg(x(i)) , i ≥ 0 ,

with β a fixed positive number (for instance, β can be taken equal to the value of γ at
previous iteration of the algorithm). We obtain

g(i) = g(x(i)) = (I − βA)ig .

Define Pi = (g, g(i)) = (g, (I − βA)ig). In matrix notation, Pn = QnGn, where

Pn = (P0, P1, . . . , Pn)
� , Gn = ((g, g), (Ag, g), . . . , (Ang, g))�

and the entries of the (n + 1) × (n + 1) matrix Qn are the binomial coefficients,

Qn =





1
1 −β

1 −2β β2

1 −3β 3β2 −β3 . . .
...

...
...

...
...




.

The value of (Ang, g) is then directly obtained from Gn = Q−1
n Pn. The entries of Pn,

defined by Pi = (g, g(i)), are also obtained more economically from

P2j = (g(j), g(j)) , P2j+1 = (g(j+1), g(j)) .

Therefore, the evaluation of γk = (P (A)Agk, gk)/(P (A)A2gk, gk), with P(·) a polyno-
mial of degree q, requires �q/2	+2 gradient evaluations (including the one at x(0) = xk).

2.3. Renormalisation

We can rewrite the iteration (3) as

(xk+1 − x∗) = (xk − x∗) − γkgk ,

with gk = g(xk) = A(xk − x∗), so that

gk+1 = gk − γkAgk = gk − (P (A)Agk, gk)

(P (A)A2gk, gk)
Agk .
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Define the renormalised variable

z(x) = Bg(x)

(P (A)Ag(x), g(x))1/2 , (5)

with B = [P(A)A]1/2, the positive square-root of P(A)A, so that (z(x), z(x)) = 1.
Also define zk = z(xk),

µk
j = (Aj zk, zk) , j ∈ Z , (6)

so that µk
0 = 1 for any k and γk = µk

0/µ
k
1 = 1/µk

1. We obtain

zk+1 = Bgk+1

(P (A)Agk+1, gk+1)1/2 = (I − γkA)Bgk

((I − γkA)Bgk, (I − γkA)Bgk)1/2

= (I − γkA)zk

((I − γkA)zk, (I − γkA)zk)1/2 = (I − γkA)zk

(1 − 2γkµ
k
1 + γ 2

k µk
2)

1/2
,

that is,

zk+1 = (I − A/µk
1)zk

(µk
2/(µ

k
1)

2 − 1)1/2
. (7)

This gives the updating formula for the moments

µk+1
j = (Aj zk+1, zk+1) =

µk
j − 2µk

j+1/µ
k
1 + µk

j+2/(µ
k
1)

2

µk
2/(µ

k
1)

2 − 1
. (8)

In the special case where H = R
d we can assume that A is already diagonalised, with

eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λd . We can then consider [zk]2
i , with [zk]i the i-th

component of zk , as a mass on the eigenvalue λi , with
∑d

i=1[zk]2
i = µk

0 = 1. Define the
discrete probability measure νk supported on (λ1, . . . , λd) by νk(λi) = [zk]2

i , so that its
j -th moment is µk

j , j ∈ Z. We can then interpret (7) as a transformation νk → νk+1. The
asymptotic behaviour of the sequence (zk) generated by (7) was studied in [1], see also [5]
and Chapter 7 of [15]. The main result is that, assuming 0 < λ1 < λ2 ≤ · · · ≤ λd−1 <

λd , the sequence (zk) converges to a two-dimensional plane, spanned by the eigenvec-
tors e1, ed associated with λ1 and λd . The attraction property is stated more precisely in
Section 3, also in the Hilbert space case. It is already important to notice that although
the results in the references above were obtained for the steepest-descent algorithm, the
renormalisation (5), which depends on the chosen P(·), makes them applicable to any
algorithm in the family considered.Also, using the renormalisation just defined we easily
obtain (non asymptotic) results on the monotonicity of the algorithm along its trajectory.

2.4. Monotonicity of a rate of convergence

Consider the function (P (A)gk+1, gk+1) that γk minimizes, and compute the rate of
convergence rk of the algorithm at iteration k, defined by
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rk = (P (A)gk+1, gk+1)

(P (A)gk, gk)
. (9)

Other rates of convergence will be considered in Section 6 where they will be shown to
be asymptotically equivalent to rk . Direct calculation gives rk = 1 − 1/Lk , with

Lk = µk
1µ

k
−1

where the moments µk
i are defined by (6). Also, from (8), Lk satisfies

Lk+1 − Lk = µk
1

D2
k

det Mk

with

Dk = µk
2 − (µk

1)
2

and

Mk =




µk

−1 µk
0 µk

1

µk
0 µk

1 µk
2

µk
1 µk

2 µk
3



 . (10)

The moment matrix Mk is positive semi-definite so that det Mk ≥ 0, and thusLk+1 ≥ Lk ,
that is, both Lk and the rate rk are non-decreasing along the trajectory followed by the
algorithm. When H = R

2 (d = 2), det Mk = 0 and rk is constant. When d > 2 or H is
a Hilbert space, the rate is monotonically increasing for a typical x0, indeed, for almost
all z0 = z(x0) with respect to the uniform measure on the unit sphere when H = R

d .
Notice that if the rate is constant over two iterations (det Mk = 0), then the measure
νk is supported on two points only, and the iteration (7) for the masses shows that this
situation will continue: the rate will thus remain constant for all subsequent iterations.

Note that Lk and Dk are bounded (since νk has a bounded support), respectively by
L∗ and D∗, with L∗ = (M + m)2/(4mM) and D∗ = (M − m)2/4, see Lemma 1 in
Appendix A3. Therefore, since Lk is non-decreasing it converges to some limit, and

det Mk = (Lk+1 − Lk)D
2
k

µk
1

≤ (Lk+1 − Lk)(D
∗)2

m
→ 0 , k → ∞ . (11)

In addition to Lk and rk another quantity also turns out to be non-decreasing along
the trajectory. Consider

(P (A)Agk+1, gk+1)

(P (A)A(xk+1 − xk), (xk+1 − xk))
= (P (A)Agk+1, gk+1)

γ 2
k (P (A)Agk, gk)

= µk
2 − (µk

1)
2 = Dk. (12)

Direct calculation using (7) gives

Dk+1 − Dk = 1

D2
k

det Nk
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with

Nk =




µk

0 µk
1 µk

2

µk
1 µk

2 µk
3

µk
2 µk

3 µk
4



 .

Again, Nk is positive semi-definite and det Nk ≥ 0 so that Dk is also non-decreasing. It
converges to some limit and det Nk converges to zero for the same reasons as above.

Substitution of P(A) for a particular algorithm shows which quantities are mono-
tonic. For the steepest-descent algorithm, P(A) = A−1, (A−1gk, gk) = 2[f (xk) −
f (x∗)], and thus the ratios rk = [f (xk+1) − f (x∗)]/[f (xk) − f (x∗)] and Dk =
(gk+1, gk+1)/((xk+1 − xk), (xk+1 − xk)) are monotonically non-decreasing. For the
method of minimal residues, P(A) = I , and the ratios rk = (gk+1, gk+1)/ (gk, gk) and
Dk = (Agk+1, gk+1)/(A(xk+1 − xk), (xk+1 − xk)) are monotonically non-decreasing.

The monotonicity and boundedness of Lk and Dk makes them suitable for studying
the asymptotic behaviour of the algorithm. This is developed in the next section.

3. Asymptotic behaviour of gradient algorithms

Consider the case H = R
d , and assume that the minimal and maximal eigenvalues of A,

λ1 = m, λd = M , are simple. The attraction property can be stated as follows. Choose
z0 = z(x0), the renormalised variable defined by (5) at the initial point x0, such that
(z0, e1) > 0, (z0, ed) > 0, with e1 and ed the eigenvectors associated with λ1 and λd

respectively. Then

z2k → √
p e1 +

√
1 − p ed , z2k+1 →

√
1 − p e1 − √

p ed when k → ∞ ,

where p is some number in (0, 1), see Section 5 concerning the range of possible val-
ues for p. This property, stated in a more general framework in Theorem 1 below, has
important consequences for the asymptotic rate of convergence of the algorithm, see
Section 6. The proof of the attraction property relies on the convergence of successive
transformations of the probability measures νk defined by [zk]2

i . The approaches used in
[1, 5] to study this convergence do not apply when H is infinite dimensional, and we shall
present a more general proof in Section 4. It differs somewhat from the one in Chapter
7 of [15], in particular in the choice of the monotonic sequence, (Lk) instead of (Dk).

The attraction theorem in R
d can be stated as follows. We can assume that A is diag-

onalised, and the probability measure νk is then discrete and puts mass [zk]2
i at the eigen-

value λi . Notice that the updating rule (7) is identical for [zk]i and [zk]j associated with
λi = λj , and the corresponding masses can thus be summed. We can therefore assume
that all eigenvalues are different when studying the evolution of νk , see Theorem 3.

Theorem 1. Let A be a d × d symmetric matrix, positive definite, with minimum and
maximum eigenvalues m and M such that 0 < m < M < ∞ and apply a P -gradient
algorithm, see Definition 1, for the minimisation of f (x) given by (1), initialized at x0,
with z0 = z(x0), see (5). Assume that

E1z0 = 0 and Edz0 = 0 , (13)
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where E1 and Ed are the orthogonal projectors on the eigenspaces respectively asso-
ciated with λ1 = m and λd = M . Then the asymptotic behaviour of the renormalised
gradient zk = z(xk) is such that

z2k = √
p u2k +

√
1 − p v2k , z2k+1 =

√
1 − p u2k+1 − √

p v2k+1 ,

with ‖un‖ = ‖vn‖ = 1 ∀n, ‖Aun − mun‖ → 0, ‖Avn − Mvn‖ → 0 as n → ∞, and
p, some number in (0, 1), depending on z0.

The proof is omitted since we prove later a more general property valid for H a Hil-
bert space. A more precise result is obtained when the eigenvalues λ1 and λd are simple:
the vector zd converges to the two-dimensional plane defined by the eigenvectors e1 and
ed associated with λ1 and λd .

Corollary 1. Let A be a positive-definite symmetric matrix with ordered eigenvalues

0 < m = λ1 < λ2 ≤ · · · ≤ λd−1 < λd = M

and let e1, ed be the eigenvectors associated with λ1 and λd respectively. Apply a P -gra-
dient algorithm, see Definition 1, for the minimisation of f (x) given by (1), initialized
at x0 such that z�

0 e1 = 0 and z�
0 ed = 0, with z0 = z(x0), see (5). Then the algorithm

attracts to the plane � spanned by e1 and ed in the following sense:

w�zk → 0 , k → ∞
for any nonzero vector w ∈ �⊥. Moreover, the sequence (zk) converges to a two-point
cycle.

This corollary is a straightforward consequence of Theorem 1: when λ1 and λd are
simple, with associated eigenvectors e1 and ed , un and vn then respectively tend to e1
and ed . The result easily generalizes to the case when (13) is not satisfied. The algorithm
then attracts to a two-dimensional plane defined by the eigenvectors ei and ej associated
with the smallest and largest eigenvalues such that z�

0 ei = 0 and z�
0 ej = 0.

We state now the attraction theorem in the more general case where H is a Hilbert
space. The proof is given in Appendix A1.

Theorem 2. Let A be a bounded real symmetric operator in a Hilbert space H, positive,
with bounds m and M , such that 0 < m < M < ∞ and apply a P -gradient algo-
rithm, see Definition 1, for the minimisation of f (x) given by (1), initialized at x0, with
z0 = z(x0), see (5). Assume that z0 is such that for any ε, 0 < ε < (M − m)/2,

(Em+εz0, z0) > 0 and (EM−εz0, z0) < 1 , (14)

with (Eλ) the spectral family of projections associated with A. The asymptotic behaviour
of the renormalised gradient zk = z(xk) is such that

z2k = √
p u2k +

√
1 − p v2k , z2k+1 =

√
1 − p u2k+1 − √

p v2k+1 , (15)

with ‖un‖ = ‖vn‖ = 1 ∀n, ‖Aun − mun‖ → 0, ‖Avn − Mvn‖ → 0 as n → ∞, and
p, some number in (0, 1), depending on z0.
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4. A property of successive transformations of a probability measure

The two properties established in this section form the cornerstones of the proofs of the
theorems of previous section. We consider first the case of a discrete measure with finite
support, which in terms of convergence of a P -gradient algorithm corresponds to the
case H = R

d . The proof is given in Appendix A2.

Theorem 3. Let ν0 be a discrete probability measure on {λ1, . . . , λd} with

0 < m = λ1 < λ2 < · · · < λd−1 < λd = M < ∞ .

Let [zk]2
i denote the mass placed at λi by νk , that is, νk(λi) = [zk]2

i . Consider the
transformation T : νk → νk+1 defined by

[zk+1]i = (1 − λi/µ
k
1)[zk]i

(µk
2/(µ

k
1)

2 − 1)1/2
(16)

with the moments µk
i defined by (6). Then, when k → ∞,

([z2k]1)
2 → p , ([z2k+1]1)

2 → 1 − p and ([z2k]d)2 → 1 − p , ([z2k+1]1)
2 → p

(17)

for some p depending on ν0, 0 < p < 1. Furthermore,

p = 1

2
± ρ + 1

ρ − 1

√
1

4
− ρL

(ρ + 1)2

with ρ = M/m and L = limk→∞ µk
1µ

k
−1.

Note that the limiting value L depends on ν0, so that the value of p that characterizes
the attractor is difficult to predict. The range of possible values for p is discussed in
Section 5.

We consider now the case of an arbitrary measure on an interval, which raises some
additional difficulties compared to previous case. In terms of convergence of aP -gradient
algorithm, it corresponds to the case where H is a Hilbert space: for Eλ the spectral fam-
ily associated with the operator A, we define the measure νk by νk(dλ) = d(Eλzk, zk),
m ≤ λ ≤ M .

Theorem 4. Let ν0 be a probability measure on the family B of Borel sets of (0, ∞),
with support [m, M], so that

m = ess inf(ν0) = sup(α / ν0{x , x < α} = 0) ,

M = ess sup(ν0) = inf(α / ν0{x , x > α} = 0) .

Assume that 0 < m < M < ∞. Consider the transformation T : νk → νk+1 defined by

νk+1(A) =
∫

A
(λ − µk

1)
2

Dk

νk(dλ) (18)
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for any A ∈ B, where µk
1 = ∫

λ νk(dλ) and Dk = µk
2 − (µk

1)
2, with µk

2 = ∫
λ2 νk(dλ).

Then, as k → ∞,

ν2k(I) → p , ν2k+1(I) → 1 − p (19)

for all I = [m, x), m < x < M , for some p depending on ν0, 0 < p < 1.

The proof of Theorem 4 is given in Appendix A3.

5. Stability of attractors

The range of possible values for p in the attraction Theorem 1 (H = R
d ) is considered

in Theorem 3 of [1] (see also Lemma 3.5 of [14]). Let s(λ) and λ∗ be defined by (20).
This theorem states that when λ∗ is not discarded at any iteration, that is, when µk

1 = λ∗
for any k, then p ∈ [1/2 − s(λ∗), 1/2 + s(λ∗)] (note that this assumption cannot be
checked). In this section we extend this result in two directions: (i) we will assume that
H is a Hilbert space, (ii) we study the stability of the attractor defined by p in Theorem
2. We shall use the following definition of stability, see [6] p. 444, [11], p. 7.

Definition 2. A fixed point ν∗ for a mapping T (·) on a metric space with distance d(·, ·)
will be called stable if ∀ε > 0, ∃α > 0 such that for any ν0 for which d(ν0, ν

∗) < α,
d(T n(ν0), ν

∗) < ε for all n > 0. A fixed point ν∗ is unstable if it is not stable.

We shall use the distance d(ν, ν′) given by the Lévy-Prokhorov metric, see [20] p.
349. In our case (measures supported on [m, M]), d(ν, ν′) becomes the Lévy distance
between the distribution functions F, F ′ associated with ν, ν′, which we denote

L(F, F ′) = inf{ε : F ′(x − ε) − ε ≤ F(x) ≤ F ′(x + ε) + ε , ∀x} .

In the case where one of the two measures is the discrete measure ν∗
p concentrated on

m, M , with ν∗
p(m) = p, ν∗

p(M) = 1 − p, we get

d(ν, ν∗
p) = L(F, F ∗

p)

= inf{ε : F(x) ≤ p + ε for x < M − ε and p − ε ≤ F(x) for m + ε ≤ x} ,

with F ∗
p the distribution function associated with ν∗

p. We then have proved the following,
see Appendix A4.

Theorem 5. Consider the situation of Theorem 4, with ν0 any probability measure sup-
ported on some closed subset SA of [m, M] and

ess inf(ν0) = m , ess sup(ν0) = M .

(i) The measure ν∗
p is a fixed point for the mapping T 2.

(ii) Consider the set Iu defined by
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Iu =
(

0,
1

2
− s(λ∗)

)
∪
(

1

2
+ s(λ∗), 1

)
,

where

s(λ) =
√

(M − λ)2 + (λ − m)2

2(M − m)
, λ∗ = min

λ∈SA

s(λ) . (20)

Any fixed point ν∗
p with p in Iu corresponds to an unstable fixed point for T 2.

(iii) Any point in the interval

Is =
(

1

2
− s(λ∗),

1

2
+ s(λ∗)

)
(21)

corresponds to a stable ν∗
p for the mapping T 2.

Remark 1. The convergence d(νk, ν
∗
p) → 0 is equivalent to weak convergence νk

w−→
ν∗
p in the usual sense. If zk is associated with the spectral measure νk and z∗

p with ν∗
p, then,

in the Hilbert space this is equivalent to (zk −z∗
p, y) → 0 for any y ∈ H, whereas strong

convergence would require ‖zk − z∗
p‖ → 0. For R

d , the two types of convergence are
equivalent, and thus Corollary 1 implies strong convergence. However, for H a Hilbert
space the equivalence is false, and indeed strong convergence generally does not hold.
The stability property (iii) is thus a weak statement when H is a Hilbert space. The L2
metric in H induces the Hellinger metric on the space of spectral measures, which defines
the same topology as the distance in variation, see [20], p. 364. Strong convergence in
H is thus related to distance in variation in the space of spectral measures and is clearly
difficult to obtain — except in the special situation where ν0 has positive mass at {m}
and {M} and presents a spectral gap: ν0[(m, m + ε)] = 0 and ν0[(M − ε, M)] = 0 for
some ε > 0.

We have νk+2(dλ) = H(νk, λ)νk(dλ), with H(νk, λ) given by (29) in Appendix
A4. One may then notice that when ν0 is a discrete probability measure, the condition
H(ν∗

p, λ) > 1 used in the proof of the instability part of the theorem, see Appendix A4,
corresponds to a condition on the eigenvalues of the Jacobian of the transformation T 2,
see [15].

Note that the stability interval Is always contains the interval
(

1

2
− 1

2
√

2
,

1

2
+ 1

2
√

2

)
≈ (0.14645, 0.85355) .

Numerical simulations for H = R
3, with A having eigenvalues m < λ < M , show that

for any initial density of x0 in R
d associated with a density of z0 reasonably spread on

the unit sphere, the density of the values of p corresponding to stable attractors ν∗
p can

be approximated by

ϕ(p) = C log[min{1, H(ν∗
p, λ)}] =

{
C log H(ν∗

p, λ) if p ∈ Is

0 otherwise ,
(22)
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Fig. 1. Empirical density of attractors (full line) and ϕ(p), see (22), for d = 3 (m = 1, λ = 4, M = 10).

where C is a normalisation constant and H(ν∗
p, λ) is given by (30). Figure 1 shows the

empirical density of attractors (full line) together with ϕ(p) (dashed line) in the case
m = 1, λ = 4, M = 10. The support of this density coincides with the stability interval Is

given by (21). When d > 3, the density of attractors depends on the initial density of x0.

6. Rates of convergence

We first state a property showing that different definitions of rates of convergence are
asymptotically equivalent, see Appendix A5 for the proof.

Theorem 6. Let W be a bounded positive self-adjoint operator in H, with bounds c and
C such that 0 < c < C < ∞. Assume that W commutes with A (when H = R

d , W is a
d × d positive-definite matrix with minimum and maximum eigenvalues respectively c

and C). Define

Rk(W) = (Wgk+1, gk+1)

(Wgk, gk)

if ‖gk‖ = 0 and Rk(W) = 1 otherwise. Apply a P -gradient algorithm (3), initialized at
x0, with γk given by (4), for the minimisation of f (x) given by (1), with minimum value
at x∗. Then the limit

R(W, x0, x
∗) = lim

n→∞

[
n−1∏

k=0

Rk(W)

]1/n
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Fig. 2. r(p) as a function of p, for ρ = 2 (bottom curve), 4, 8 and 16 (top)

exists for all x0, x
∗ in H and R(W, x0, x

∗) = R(x0, x
∗) does not depend on W . In

particular,

R(W, x0, x
∗) = lim

n→∞

(
n−1∏

k=0

rk

)1/n

with rk defined by (9).

From the results of Section 3, we have

R(W, x0, x
∗) = r(p) = p(1 − p)(ρ − 1)2

[p + ρ(1 − p)][(1 − p) + ρp]

for any W , where p defines the attractor, see (15), and ρ = M/m is the condition number
of the operator. The function r(p) is symmetric with respect to 1/2 and monotonously
increasing from 0 to 1/2, see Figure 2. The worst asymptotic rate is thus obtained at
p = 1/2:

Rmax =
(

ρ − 1

ρ + 1

)2

. (23)

Note that ∀k, rk ≤ Rmax since rk is not decreasing, see Section 2.4. For a typical x0
(such that the convergence is not finite, that is, such that r(p) = 0), the stability analysis
of Section 5 shows that only values of p in Is given by (21) may correspond to stable
attractors. The range of possible values of R(p) is thus [Rmin, Rmax], where Rmax, given
by (23), is obtained for p = 1/2 and

Rmin ≤ R∗
min = R(1/2 + 1/[2

√
2]) = (ρ − 1)2

(ρ + 1)2 + 4ρ
.
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Figure 3 presents the range [R∗
min, Rmax] as a function of 1/ρ, the upper curve corre-

sponding to Rmax and the lower to R∗
min. The maximum size of the range is 3 − 2

√
2 �

0.1716, obtained at ρ = 1 + 2
√

2 + 2
√

2 + √
2 � 7.5239. These results confirm the

experimental observation that the rate of convergence of the gradient algorithm is gener-
ally close to its worst value Rmax, see [14]. The same property is true for any P -gradient
algorithm.

Remark 2. A similar analysis for Dk defined by (12), which is also not decreasing,
shows that Dk → D(p) = p(1 −p)(M −m)2 as k → ∞, with Dk ≤ D∗ = D(1/2) =
(M − m)2/4 for all k. Also, for any typical x0 such that p ∈ Is given by (21), we have
D(p) ≥ D(1/2 + 1/[2

√
2]) = (M − m)2/8.

Another quantity of interest is given by


N = log(Rmax/Rmin)/[log(Rmax) log(Rmin)] .

Indeed, for N large enough, (WgN, gN)/(Wg0, g0) � r(p)N , the number N of iter-
ations required for obtaining a ratio (WgN, gN)/(Wg0, g0) = ε (ε � 1) is approx-
imately log(ε)/ log[r(p)] and 
N | log(ε)| thus indicates the length of the interval of
possible values for N due to the range of possible values for p. Direct calculation gives

N | log(Rmax)| < 1/2 for any ρ and


N = ρ/8 − 1/4 + O(1/ρ) , 1/ log(Rmax) = −ρ/4 + O(1/ρ)

for large ρ. Therefore, the number of iterations required by a P -gradient algorithm to
achieve a given precision ε << 1 varies at most by a factor 2 depending on the (typical)
starting point x0, factors of variation close to 2 being possible only when ρ is large.

The average value of R(W, x0, x
∗) for z0 = z(x0) uniformly distributed on the

unit sphere is the same for any P -gradient algorithm, more generally, the distribution
of R(W, x0, x

∗) associated with a particular distribution of z0 does not depend on the
particular P -gradient algorithm considered. Moreover, numerical simulations show that
the average value of R(I, x0, x

∗) is the same for the steepest-descent (P(A) = A−1) and
minimum residues (P(A) = I ) algorithms for x0 uniformly distributed on the sphere
‖x0 −x∗‖ = 1. The small deviations in average performance between different P -gradi-
ent algorithms can only be related to the fact that a fixed distribution for x0 corresponds
to different distributions for z(x0).

Remark 3. It is known that the introduction of a relaxation coefficient γ , with 0 < γ < 1,
in the steepest-descent algorithm totally changes its behaviour, see, e.g., Chapter 7 of
[15]; the algorithm (2) then becomes xk+1 = xk −γ [(gk, gk)/(Agk, gk)]gk . For H = R

d

and a fixed A, depending on the value of γ , the renormalized process either converges to
periodic orbits (the same for almost all starting points) or exhibits a chaotic behaviour,
with the classical period-doubling phenomenon in the case d = 2. In higher dimensions,
repeated numerical trials show that the process typically no longer converges to the 2-
dimensional plane spanned by (e1, ed). A detailed analysis for d = 2 and experimental
results for d > 2 also show that relaxation (with γ close to 1) considerably improves the
rate of convergence. Similar results hold more generally for all P -gradient algorithms,
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Fig. 3. Range [R∗
min, Rmax] of possible values of the asymptotic rate r(p) as a function of 1/ρ

with the iteration (3) transformed into xk+1 = xk − γ γkgk , with γ the (fixed) relaxa-
tion coefficient and γk given by (4). Steepest descent with random relaxation coefficient
γ ∈ (0, 2) is considered in [19], avoiding the two point attraction and significantly
improving the behavior of ordinary steepest descent.

Appendix

A1. Proof of Theorem 2. The proof relies on Theorem 4 (Theorem 3 when H = R
d ),

which concerns successive transformations applied to a probability measure.
Since A is self-adjoint, its spectrum SA is a closed subset of the interval [m, M]

of the real line and m, M ∈ SA. Let Eλ be the spectral family associated with A,
and define the spectral measure νk by νk(dλ) = d(Eλzk, zk), m ≤ λ ≤ M . Since
(zk, zk) = ∫M

m
νk(dλ) = 1, νk is a probability measure on the Borel sets of (0, ∞), with

νk([m, M]) = 1 ∀k. This representation gives

µ1 = (Azk, zk) =
∫

λ νk(dλ) , µ2 = (A2zk, zk) =
∫

λ2 νk(dλ)

where integration is over [m, M] unless otherwise specified. Therefore, for any Borel
set A the transformation (7) gives in terms of νk:

νk+1(A) =
∫
A
[
λ − ∫

λ′ νk(dλ′)
]2

νk(dλ)
∫

λ′2 νk(dλ′) − [∫
λ′ νk(dλ′)

]2 .

The conditions (14) on z0 are equivalent to ess inf(ν0) = m and ess sup(ν0) = M , see
Theorem 4, and the updating rule for νk can be written as (18). Theorem 4 then implies
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(19), which can be written as: ∀ε > 0, ε ≤ β = (M − m)/2,

(Em+εz2k, z2k) → p , (EM−εz2k, z2k) → p ,

(Em+εz2k+1, z2k+1) → 1 − p , (EM−εz2k+1, z2k+1) → 1 − p ,

as k → ∞, where p depends on z0, 0 < p < 1. Define p2k = (Em+βz2k, z2k),
p2k+1 = 1 − (Em+βz2k+1, z2k+1), and the angles ϕ, ϕn by cos ϕ = √

p, sin ϕ =√
1 − p, cos ϕn = √

pn, sin ϕn = √
1 − pn, ∀n. Also define s2k = Em+βz2k/ cos ϕ2k ,

s2k+1 = Em+βz2k+1/ sin ϕ2k+1, t2k = (z2k − Em+βz2k)/ sin ϕ2k , t2k+1 = −(z2k+1 −
Em+βz2k+1)/ cos ϕ2k+1. This gives pn → p as n → ∞, ‖sn‖ = ‖tn‖ = 1 ∀n, and
z2k = cos ϕ2k s2k + sin ϕ2k t2k , z2k+1 = sin ϕ2k+1 s2k+1 − cos ϕ2k+1 t2k+1. Also,

‖Asn − msn‖2 =
∫

(λ − m)2 d(Eλsn, sn) ,

which, for n = 2k and any ε, 0 < ε < β, gives

‖As2k − ms2k‖2 =
∫ m+β

m

(λ − m)2

p2k

d(Eλz2k, z2k)

=
∫ m+ε

m

(λ − m)2

p2k

d(Eλz2k, z2k) +
∫ m+β

m+ε

(λ − m)2

p2k

d(Eλz2k, z2k)

≤ ε2

p2k

+ β2

p2k

[
p2k −

∫ m+ε

m

d(Eλz2k, z2k)

]
.

Since p2k → p and
∫ m+ε

m
d(Eλz2k, z2k) → p as k → ∞, ‖As2k − ms2k‖ → 0 as

k → ∞. Similarly, ‖As2k+1 − ms2k+1‖ → 0 as k → ∞ and ‖Atn − Mtn‖ → 0 as
n → ∞. Consider now

un = cos ϑn sn + sin ϑn tn , vn = − sin ϑn sn + cos ϑn tn .

Straightforward calculations show that ϑn = ϕn − ϕ gives (15) with ‖un‖ = ‖vn‖ = 1
∀n. Also

‖Aun − mun‖ ≤ | cos ϑn|‖Asn − msn‖ + | sin ϑn|(M − m) ,

and, since ‖Asn − msn‖ → 0, ϑn → 0 as n → ∞, ‖Aun − mun‖ → 0 as n → ∞.
Similarly, ‖Avn − Mvn‖ → 0 as n → ∞. ��

A2. Proof of Theorem 3. We first prove that the mass of νk tends to concentrate on
two eigenvalues only. When ν0 is non degenerate, L1 > 1 from Jensen inequality, and
thus, since (Lk) is non-decreasing, see Section 2.4, Lk ≥ L1 > 1. Now, from Lagrange
identity (

∑
a2
i )(
∑

b2
i ) = ∑

i<j (aibj − ajbi)
2 + (

∑
aibi)

2
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Lk =
(

d∑

i=1

λi[zk]2
i

) (
d∑

i=1

[zk]2
i /λi

)

=
∑

i<j

[zk]2
i [zk]2

j

(√
λi√
λj

−
√

λj√
λi

)2

+
(

d∑

i=1

[zk]2
i

)2

=
∑

i<j

[zk]2
i [zk]2

j

(λi − λj )
2

λiλj

+ 1 .

Let ik and jk denote the indices that achieve maxi<j [zk]2
i [zk]2

j . We have

Lk ≤ [zk]2
ik

[zk]2
jk

∑

i<j

(λi − λj )
2

λiλj

+ 1

and thus

[zk]2
ik

[zk]2
jk

≥ δ = L1 − 1
∑

i<j

(λi−λj )2

λiλj

.

Moreover, [zk]2
ik

+ [zk]2
jk

< 1 gives

δ < [zk]2
ik

< 1 − δ and δ < [zk]2
jk

< 1 − δ .

Consider the matrix Mk given by (10). Its determinant can be written as

det Mk =
∑

i<j<l

[zk]2
i [zk]2

j [zk]2
l

(λi − λj )
2(λi − λl)

2(λj − λl)
2

λiλjλl

≥ [zk]2
ik

[zk]2
jk

(λik − λjk
)2

∑

i =ik,jk

[zk]2
i

(λi − λik )
2(λi − λjk

)2

λiλikλjk

≥ δ
δ6
λ

M3

∑

i =ik,jk

[zk]2
i

where

δλ = min
i,j

|λi − λj | .

Since det Mk → 0 as k → ∞, see (11), we get
∑

i =ik,jk
[zk]2

i → 0 as k → ∞. The
mass thus tends to concentrate on λik , λjk

.
Next we prove that ik and jk eventually become fixed. From the result above, ∀ε > 0,

∃kε such that
∑

i =ik,jk
[zk]2

i < ε, k > kε .

Consider the updating equation (16). We have for any i, (µk
1 − λi)

2 ≤ (M − m)2.
Also, Dk = µk

2 − (µk
1)

2 ≥ D0, see Section 2.4. This gives for i = ik, jk and k > kε

[zk+1]2
i < ε

(M − m)2

D0
.
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Taking ε1 = δD0/(M − m)2 we obtain [zk+1]2
i < δ for i = ik, jk and k > kε1 . Since

[zk+1]2
ik+1

> δ and [zk+1]2
jk+1

> δ, i ∈ {ik, jk} implies i ∈ {ik+1, jk+1}, k > kε1 and
thus {ik, jk} = {i∗, j∗} for k > kε1 .

We show now that {i∗, j∗} = {1, d}. Assume that i∗ < j∗ < d (which implies
[zk]2

d → 0, k → ∞). We need to show that (λd − µk
1)

2 > (λj∗ − µk
1)

2 for k large
enough. We have

µk
1 = λi∗ [zk]2

i∗ + λj∗ [zk]2
j∗ +

∑

i =i∗,j∗
λi[zk]2

i ≤ λi∗ [zk]2
i∗ + λj∗ [zk]2

j∗ + λd

∑

i =i∗,j∗
[zk]2

i .

Take ε2 = min{ε1, δδλ/λd}. For k > kε2 we have

µk
1 ≤ λi∗ [zk]2

i∗ + λj∗ [zk]2
j∗ + λdε2 ≤ λi∗δ + λj∗(1 − δ) + λdε2

≤ λj∗ − δδλ + λdε2 ≤ λj∗

and thus (λd − µk
1)

2 > (λj∗ − µk
1)

2. From (16), this gives for k > kε2

(
[zk+1]d
[zk]d

)2

= (λd − µk
1)

2

Dk

>
(λj∗ − µk

1)
2

Dk

=
(

[zk+1]j∗

[zk]j∗

)2

and thus
(

[zk+1]j∗

[zk+1]d

)2

<

(
[zk]j∗

[zk]d

)2

.

We arrived at a contradiction since [zk]2
d → 0 and [zk]2

j∗ is bounded from below by δ.
Therefore j∗ = d. Similarly, i∗ = 1.

Finally, let L denote limk→∞ Lk , see Section 2.4. There are only two discrete mea-
sures with nonzero masses on λ1 and λd and such that µ1µ−1 = L,

ν(1) =
{

λ1 λd

p 1 − p

}
and ν(2) =

{
λ1 λd

1 − p p

}

with

p = 1

2
− ρ + 1

ρ − 1

√
1

4
− ρL

(ρ + 1)2

and ρ = M/m. Direct calculation shows that νk = ν(1) gives νk+1 = ν(2), hence the
convergence of νk to the cyclic attractor ν(1) → ν(2) → ν(1) → · · · ��

A3. The proof of Theorem 4 is more technical than that of Theorem 3 and relies on a
series of lemmas stated below.

Lemma 1. Let ν be any probability distribution on [m, M], 0 < m ≤ M < ∞ with
moments µi = ∫

λiν(dλ), i ∈ Z (µ0 = 1). Then,

µ2 − µ2
1 ≤ D∗ = (M − m)2/4 (24)

µ1µ−1 ≤ L∗ = (M + m)2/(4mM) . (25)
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Proof. The proof relies on standard results in experimental design theory, see, e.g.,
[4, 21]. Consider the two linear regression models η1(θ, λ) = θ0 + θ1λ and η2(θ, λ) =
θ0/

√
λ+θ1

√
λ, with θ0, θ1 the model parameters and λ the design variable, λ ∈ [m, M].

D-optimum design (approximate theory) aims at determining a probability measure on
[m, M] that maximizes the determinant of the information matrix associated with a
particular model, here respectively

I1(ν) =
(

µ0 µ1
µ1 µ2

)
and I2(ν) =

(
µ−1 µ0
µ0 µ1

)
.

The function log det I(ν) is concave on the set of probability measures on [m, M],
and its maximum is unique. The Kiefer-Wolfowitz General Equivalence Theorem [8]
gives a characterization of the measure ν∗ that maximizes det I1(ν) = µ2 − µ2

1 and
det I2(ν) = µ1µ−1 − 1. In this case it corresponds to the two point measure, supported
at m and M , with both masses equal to 1/2. Direct calculation gives (24,25). One may
notice that (25) corresponds to the Kantorovich inequality, see [7] and [12], p. 151. (A
full development of this connection is presented in [17].) ��
Lemma 2. Let ν be any probability distribution on [m, M], 0 < m ≤ M < ∞. Assume
that there exists an interval I ⊆ [m, M], |I| ≤ α and ν(I) ≥ 1 − ε, ε ∈ [0, 1]. Then,
Var(ν) ≤ α2/4 + 2εM2.

Proof. Define µ1 = ∫
[m,M] λ ν(dλ), µI = ∫

I λ ν(dλ). Then µ1 = µI + ∫
[m,M]\I

λ ν(dλ). Therefore, µI ≤ µ1 ≤ µI + εM . We get

Var(ν) =
∫

(λ − µ1)
2 ν(dλ) ≤

∫

I
(λ − µ1)

2 ν(dλ) + (M − m)2ε

=
∫

I
(λ − µI)2 ν(dλ) + (µ1 − µI)2ν(I) + (M − m)2ε .

Lemma 1 implies
∫
I(λ − µI)2 ν(dλ) ≤ α2/4 and (µ1 − µI)2 ≤ ε2M2 gives

Var(ν) ≤ α2/4 + ε2M2 + M2ε ≤ α2/4 + 2εM2 .

��
Lemma 3. Let ν be any probability distribution on [m, M], 0 < m ≤ M < ∞. Assume
thatVar(ν) ≤ ε. Then, there exist an interval I such that |I| ≤ ε1/4 and ν(I) ≥ 1−4

√
ε.

Proof. Take I = [µ1 −ε1/4/2, µ1 +ε1/4/2], µ1 = ∫
λ ν(dλ), and apply the Chebyshev

inequality. ��
Lemma 4. Let ν be any distribution on [m, M], 0 < m ≤ M < ∞. Define µi =∫

λi ν(dλ) and

M =



µ−1 µ0 µ1
µ0 µ1 µ2
µ1 µ2 µ3



 .
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Assume that L = µ−1µ1 > 1 (which, by Jensen’s inequality, holds when ν is not degen-
erate at a single point) and det M < ε. Then, there exist two intervals I1 and I2 such
that

(i) |Ii | ≤ (M − m)ε1/4

m9/4(L − 1)3/2 , i = 1, 2 , ν(I1) + ν(I2) ≥ 1 − 4
√

εM3/2 ,

(ii) max
x∈Ii

|x − µ−1| >
3(L − 1)m2

4(M − m)
, i = 1, 2 , (26)

(iii) for ε < ε∗ = 4(L − 1)8M8m16

[32(L − 1)3 + M4(M − m)2]2 ,

ν(Ii ) ≥ m2(L − 1)

4M2 , i = 1, 2 , (27)

and max
x∈I1,y∈I2

|x − y| > m
√

2(L − 1) .

Proof. (i) Consider the measure ν′ defined by ν′(A) = (1/µ−1)
∫
A(1/λ)ν(dλ) for any

Borel set A ⊂ [m, M], and denote its moments by µ′
i = (1/µ−1)

∫
λi−1ν(dλ) =

µi−1/µ−1. Note that for any Borel set A

1

Mµ−1
ν(A) ≤ ν′(A) ≤ 1

mµ−1
ν(A) .

We have

M′ =



µ′

0 µ′
1 µ′

2
µ′

1 µ′
2 µ′

3
µ′

2 µ′
3 µ′

4



 = M/µ−1

and thus det M′ = det M/µ3
−1. Also define D′ = µ′

2 − (µ′
1)

2, a = √
D′, b = (µ′

1µ
′
2 −

µ′
3)/

√
D′, c = aµ′

2 + bµ′
1 = [(µ′

2)
2 − µ′

1µ
′
3]/

√
D′ (note that a > 0, b < 0 and

c < 0) and η = F(ζ ) = aζ 2 + bζ − c, with ζ having the distribution ν′. Direct cal-
culation gives E′{η} = ∫

η(ζ )ν′(dζ ) = 0 and Var′(η) = E′{η2} − (E′{η})2 = det M′,
so that det M < ε implies Var′(η) < ε′ = ε/µ3

−1. From Lemma 3, the interval I =
[−(ε′)1/4/2, (ε′)1/4/2] is such that Pr{η ∈ I} ≥ 1 − 4

√
ε′. Also, from the mean-value

theorem, there exist λ1 < λ2 such that λi ∈ [m, M] and aλ2
i + bλi − c = 0, i = 1, 2.

Direct calculation gives F(µ′
1) = F(µ−1) = a(µ′

1)
2 + bµ′

1 − c = −(D′)3/2, and thus

m ≤ λ1 < 1/µ−1 < λ2 ≤ M .

Take β = (M − m)(ε′)1/4/[2(D′)3/2], we get

F(λ1 + β) < −(ε′)1/4/2 , F (λ1 − β) > (ε′)1/4/2 ,

F (λ2 + β) > (ε′)1/4/2 , F (λ2 − β) < −(ε′)1/4/2 ,

and ν(I1) + ν(I2) ≥ 1 − 4
√

εM3/2 when Ii = [λi − β, λi + β], i = 1, 2, with
|Ii | = 2β = (M − m)ε1/4µ

9/4
−1 /(L − 1)3/2 ≤ (M − m)ε1/4/[m9/4/(L − 1)3/2].
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(ii) Define y1 = µ′
1 − λ1, y2 = λ2 − µ′

1, so that maxx∈I1 |x − µ−1| > y1 and
maxx∈I2 |x − µ−1| > y2. We have F(λ) = a(λ − λ1)(λ − λ2) and thus y1y2 =
−F(µ′

1)/a = D′.Also, |y2−y1| < y1+y2 ≤ M−m, so that D′ > yi(yi +M−m),
i = 1, 2, and thus

yi >
M − m

2

[√

1 + 4D′

(M − m)2 − 1

]
>

D′

M − m

(
1 − D′

(M − m)2

)
, i = 1, 2 .

Lemma 1 gives D′ < (M − m)2/4, so that

yi > 3D′/[4(M − m)] > 3(L − 1)m2/[4(M − m)] , i = 1, 2 .

(iii) Define γ = ν′(I2), part (i) implies ν′(I1) > 1 − 4
√

ε′ − γ , and from Lemma 2

D′ ≤ (M − m)2
√

ε′

4(D′)3 + 2(4
√

ε′ + γ )M2 ,

which gives

γ ≥ D′

2M2 −
√

ε′
[

(M − m)2

8(D′)3M2 + 4

]
,

and thus γ ≥ D′/(4M2) > (L − 1)m2/[4M2] for ε < ε∗ < [4(D′)8]/[(M − m)2 +
32(D′)3M2]2, see (27).

Define now 
 = maxx∈I1,y∈I2 |x − y|. Lemma 2 gives D′ ≤ 
2/4 + 8
√

ε′M2,
which implies 
2 ≥ 4D′ − 32M2

√
ε′. Since ε < ε∗ implies

√
ε′ < D′/(16M2), we

get 
2 > 2(L − 1)m2. ��

Proof of Theorem 4. The proof follows the same lines as that of Theorem 3 and is divided
into four parts. In (i), we construct sequences of intervals Lk = [mk, mk + δ] and
Rk = [Mk − δ, Mk] in which the measure νk will tend to concentrate. In (ii) we prove
that Rk ∩ Rk+1 = ∅ and in (iii) that the sequence Mk is non-decreasing. Finally, the
limiting behaviour of νk is derived in (iv).

(i) We have seen in Section 2.4 that det Mk → 0 as k → ∞, with Mk given by (10).
Therefore, given ε, ∃Kε such that ∀k > Kε , det Mk < ε. Define Lk = µk

1µ
k
−1 and

note that Lk > 1 because no νk is degenerate at a single point. Using Lemma 4,
for ε small enough, for any k > Kε there exist two intervals Ik

1 , Ik
2 , with width at

most

δ = δ(ε) = (M − m)ε1/4

m9/4(L0 − 1)3/2 ,

and such that νk(Ik
1 )+νk(Ik

2 ) ≥ 1−4
√

εM3/2, νk(Ik
1 ) ≥ m2(Lk −1)/(4M2), νk(Ik

2 ) ≥
m2(Lk − 1)/(4M2). Also, maxx∈Ik

1 ,y∈Ik
2
|x − y| ≥ m

√
2(Lk − 1). Without any loss
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of generality, assume that Ik
1 is the interval on the left. Define L(x) = [x, x + δ],

R(x) = [x − δ, x],

X k
L = Arg max

x
{νk[L(x)] , L(x) ∩ Ik

1 = ∅} ,

X k
R = Arg max

x
{νk[R(x)] , R(x) ∩ Ik

2 = ∅} ,

and mk = min X k
L, Mk = max X k

R , Lk = L(mk), Rk = R(Mk); that is, Mk is the right
endpoint of an interval Rk , intersecting Ik

2 , with maximum measure, and similarly for
mk and Lk . Note that νk(Lk)+ νk(Rk) ≥ 1 − 4

√
εM3/2, νk(Lk) ≥ m2(Lk − 1)/(4M2)

and νk(Rk) ≥ m2(Lk − 1)/(4M2). The situation is the same for the two sequences of
intervals (Lk) and (Rk), and we concentrate on (Rk) in the rest of the proof.

(ii) We show now that Rk ∩ Rk+1 = ∅. Again for ε small enough µk
1 /∈ Rk and

λ − µk
1 ≥ Mk − δ − µk

1 on Rk so that

νk+1(Rk) =
∫

Rk

(λ − µk
1)

2

Dk

νk(dλ) ≥ νk(Rk)

Dk

(Mk − δ − µk
1)

2

≥ m2(Lk − 1)

4M2D∗ (Mk − δ − µk
1)

2

with D∗ the maximum possible value of Dk , D∗ = (M − m)2/4, see Lemma 1. By
construction, maxx∈I2

k
|x − µk

1| ≤ Mk + δ − µk
1, and thus, from Lemma 4,

Mk − µk
1 + δ >

3m2(Lk − 1)

4(M − m)
≥ 3m2(L0 − 1)

4(M − m)
= C . (28)

Choosing ε such that δ < C/4 gives Mk − δ − µk
1 > C/2 and thus

νk+1(Rk) >
m2(Lk − 1)

4M2D∗
C2

4
≥ ν∗

R = 9m6(L0 − 1)3

16M2(M − m)4 .

Choosing now ε such that 4
√

εM3/2 < ν∗
R we obtain Rk ∩ Rk+1 = ∅ for any k > Kε .

(iii) We prove now that the sequence (Mk) is not decreasing starting at some Kε for
ε small enough. Take k > Kε and assume that Mk+1 = Mk − β, β > 0. Then
note that β < δ since Rk ∩ Rk+1 = ∅ by (ii) above. Consider the difference
νk+1(Rk) − νk+1(Rk+1) = νk+1([Mk − β, Mk]) − νk+1([Mk − δ − β, Mk − δ]).
Assume first that νk+1([Mk − δ −β, Mk − δ]) = 0, then νk+1(Rk) > νk+1(Rk+1),
which is impossible by construction. We can thus consider the following ratio

νk+1([Mk − β, Mk])

νk+1([Mk − δ − β, Mk − δ])
=

∫Mk

Mk−β
(λ − µk

1)
2 νk(dλ)

∫Mk−δ

Mk−δ−β
(λ − µk

1)
2 νk(dλ)

≥ (Mk − β − µk
1)

2

(Mk − δ − µk
1)

2

νk([Mk − β, Mk])

νk([Mk − δ − β, Mk − δ])
.

Since Mk − δ −µk
1 ≥ C − 2δ ≥ 2δ for C > 4δ, see (28), and β < δ, (Mk −β −µk

1)
2 >

(Mk − δ − µk
1)

2. Also, by construction,
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0 ≤ νk([Mk − β, Mk]) − νk([Mk − δ − β, Mk − δ])

= νk([Mk − β, Mk]) − νk([Mk − δ − β, Mk − δ]) .

This gives

νk+1([Mk − β, Mk])

νk+1([Mk − δ − β, Mk − δ])
> 1 .

Therefore, β > 0 leads to νk+1(Rk) > νk+1(Rk+1), which is impossible. We thus obtain
Mk+1 ≥ Mk for k > Kε .

(iv) Since the sequence (Mk) is non-decreasing and bounded from above (by M), it has
a limit M∗ ≥ M . The same is true for mk , and mk → m∗ as k → ∞. We have thus
proved that for any δ small enough and any k larger than some Kδ ,

νk([M∗ − δ, M∗]) + νk([m∗, m∗ + δ]) ≥ 1 − 4M3/2m9/2(L0 − 1)3δ2

(M − m)2 .

Assume that M∗ < M . This would imply νk([M − δ, M]) → 0 as k → ∞ for δ <

M − M∗. On the other hand,

νk+1([M − δ, M])

νk+1([M∗ − δ, M∗])
>

νk([M − δ, M])

νk([M∗ − δ, M∗])
,

which leads to a contradiction since νk([M − δ, M])/νk([M∗ − δ, M∗]) is then increas-
ing and νk([M∗ − δ, M∗]) is bounded from below. Therefore, M∗ = M , and similarly
m∗ = m, with, for δ small enough and any k larger than some Kδ , νk([m+ δ, M − δ]) <

4M3/2m9/2(L0−1)3δ2/(M−m)2. Finally, from Helly’s Theorem, see [20], p. 319, from
the sequence (νk) we can extract a subsequence (νki

) that is weakly convergent, and from
the result above the associated limit has necessarily the form ν∗

p, where ν∗
p is the discrete

measure concentrated on the two points m, M , with ν∗
p(m) = p, ν∗

p(M) = 1 − p. Since
Lki

converges to some L, ν∗
p is such that the associated value of µ1µ−1 is equal to L,

which only leaves two possibilities for p (and 1 − p):

p = 1

2
± ρ + 1

ρ − 1

√
1

4
− ρL

(ρ + 1)2

where ρ = M/m. Applying the transformation T , we get νki+1 = T (νki
) → T (ν∗

p) =
ν∗

1−p. ��

A4. Proof of Theorem 5.

(i) It is straightforward to check that T 2(ν∗
p) = ν∗

p, ∀p ∈ (0, 1).
(ii) We assume that SA is not reduced to {m, M} (otherwise Iu = ∅). We have

νk+2(dλ) = H(νk, λ)νk(dλ), with



432 L. Pronzato et. al.

H(νk, λ) = (λ − µk
1)

2(λ − µk+1
1 )2

DkDk+1
(29)

see (18), with µk
1, Dk defined as in Theorem 4. For νk = ν∗

p, it gives

H(ν∗
p, λ) = [M(1 − p) + mp − λ]2[Mp + m(1 − p) − λ]2

p2(1 − p)2(M − m)4 . (30)

One can then check that for any p ∈ Iu, maxλ∈SA
H(ν∗

p, λ) = H(ν∗
p, λ∗) > 1, with

λ∗ = minλ∈SA
s(λ). Therefore, for any p ∈ Iu, one can choose ε small enough, such

that d(νk, ν
∗
p) < ε implies νk+2([a, b]) > Kpνk([a, b]), for some Kp > 1 and some

a, b such that m + ε < a < b < M − ε and [a, b] ∩ SA = ∅. For any α > 0,
α < 1 − p, take an initial measure ν0 putting mass p at m, 1 − p − α at M and α

in the interval [a, b]. It satisfies d(ν0, ν
∗
p) < α, and, for any m, either d(ν2m, ν∗

p) > ε

or ν2(m+1)([a, b]) > Kpν2m([a, b]). The later case gives ν2m([a, b]) > 2ε, and thus
d(ν2m, ν∗

p) > ε, as soon as m > log(2ε/α)/ log(Kp), which shows that ν∗
p is unstable.

(iii) Part (a) concerns the case where a spectral gap is present, with point mass at m and
M . The proof for the general situation is more technical and is sketched in part (b).

(a) Assume that the measure ν0 has a spectral gap: ν0 = 0 on (m, m + s) and
(M − s, M) for some s > 0. Take γ < s and assume that d(ν0, ν

∗
p) < α < γ with

p ∈ Is . The arguments go as follows. First we bound ν2{(m + γ, M − γ ]} by 2K0α for
some K0 < 1, then we bound ν2{(M − γ, M]} by 1 − p + K1α for some K1 < ∞. We
show that d(ν2, ν

∗
p2

) < K0α for some p2 such that |p2 − p| < (K0 + K1)α. Stability
will then follow by an induction argument.

The maximum value of H(ν0, λ) for λ varying in [m + γ, M − γ ] may be reached
for some λ∗ ∈ (µ0

1, µ
1
1) or at one of the two points m + γ , M − γ . Now, for α small

enough H(ν0, λ) will be close to H(ν∗
p, λ) given by (30), and p ∈ Is implies

max
λ∈SA∩(µ0

1,µ
1
1)

H(ν0, λ) < 1 . (31)

Consider the function H(ν0, λ) at λ = M − γ . We can write

H(ν0, M − γ ) = H(ν∗
p, M) − γ

dH(ν∗
p, λ)

dλ |λ=M
+ FH (ν∗

p; ν0, M) + O(γ 2) , (32)

with FH (ν∗
p; ν0, M) the directional derivative of H(ν, M) at ν∗

p in the direction ν0,

FH (ν∗
p; ν0, M) = lim

β→0+

H [(1 − β)ν∗
p + βν0, M] − H(ν∗

p, M)

β
.

Define FH (ν∗
p, x, λ) = FH (ν∗

p; δx, λ) with δx the delta measure supported at x. We have

FH (ν∗
p; ν0, M) =

∫ M

m

FH (ν∗
p, x, M)νk(dx) ,
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which we decompose in three parts:

FH (ν∗
p; ν0, M) =

∫ m+γ

m

FH (ν∗
p, x, M)ν0(dx) +

∫ M−γ

m+γ

FH (ν∗
p, x, M)ν0(dx)

+
∫ M

M−γ

FH (ν∗
p, x, M)ν0(dx) .

Direct calculation gives

FH (ν∗
p, x, M) = (x − m)2(M − x)[x − m + (2p − 1)(M − m)]

p2(1 − p)2(M − m)4

so that FH (ν∗
p, m, M) = FH (ν∗

p, M, M) = 0 and FH (ν∗
p; ν0, M) < F ∗ν0{(m+γ, M −

γ ]} with F ∗ = maxp∈Is , x∈[m,M] FH (ν∗
p, x, M) < ∞. Also, d(ν0, ν

∗
p) < α implies

ν0{(m + γ, M − γ ]} = ν0{(m + α, M − α]} < 2α, so that FH (ν∗
p; ν0, M) < 2αF ∗.

Now,

H(ν∗
p, M) = 1 ,

dH(ν∗
p, λ)

dλ |λ=M
= 2

p(1 − p)(M − m)
,

which, together with (32) gives for γ small enough

H(ν0, M − γ ) < 1 + 2αF ∗ − γ

p(1 − p)(M − m)

and thus

H(ν0, M − γ ) < 1 − γ

2p(1 − p)(M − m)

for α < γ/[4F ∗p(1 − p)(M − m)].
The situation is similar at m+ γ . Together with (31) this implies for α small enough

max
λ∈SA∩[m+γ,M−γ ]

H(ν0, λ) < K0 < 1

and therefore,

ν2{(m + γ, M − γ ]} < 2K0α (33)

with K0 < 1 not depending on α.
Consider now the interval (M − γ, M]. We have

ν2{(M − γ, M]} = ν2(M) = H(ν0, M)ν0{(M − γ, M]} = H(ν0, M)ν0(M) ,

with d(ν0, ν
∗
p) < α implying ν0(M) < 1 − p + α, and

H(ν0, M) = H(ν∗
p, M) + FH (ν∗

p; ν0, M) + O(α2) < 1 + 2αF ∗ + O(α2) .

This gives for α small enough

ν2{(M − γ, M]} < 1 − p + K1α
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for some K1 < ∞. Similarly, ν2{[m, m + γ ]} < p + K1α.
Define p0 = p, p2 = [ν2(m) − ν2(M) + 1]/2, α0 = α. We obtain

−K0α0 < ν2(m) − p2 < 0 , −K0α0 < ν2(M) − (1 − p2) < 0

which together with (33) implies

d(ν2, ν
∗
p) < α2 = K0α0 .

Moreover, |p2 − p0| < (K0 + K1)α0.
For α small enough, p2 ∈ Is and we can then repeat the same arguments. This gives

for any m

d(ν2m, ν∗
p2m

) < α2m = Km
0 α

with

| p2m − p | < (K0 + K1)

m−1∑

i=0

α2i = (K0 + K1)
1 − Km

0

1 − K0
α <

K0 + K1

1 − K0
α

and p2m ∈ Is , for α small enough. For any p ∈ Is and any ε > 0, taking ν0 such that
d(ν0, ν

∗
p) < α with α small enough thus implies d(ν2m, ν∗

p) < ε for any m, and ν∗
p is

thus stable.
(b) Consider now the general situation. The proof follows the same lines as in case

(a), but more technicalities are required since we need to consider measures of intervals
of the form [m, m + γ ] and (M − γ, M], with γ decreasing in a suitable way as the
number of iterations of the mapping T 2 increases.

Assume that

ν2k{(m + γ2k, M − γ2k]} < 2α2k ,

ν2k{[m, m + γ2k]} < p2k + α2k ,

ν2k{(M − γ2k, M]} < 1 − p2k + α2k .

for some p2k ∈ Is and some α2k , γ2k . Note that it implies d(ν2k, ν
∗
p2k

) < γ2k and that
for k = 0, α0, γ0 can be chosen arbitrarily small, with d(ν0, ν

∗
p) < α0 for some p ∈ Is .

Consider one application of the mapping T 2 at a generic iteration k. We can write
H(ν2k, M) = H(ν∗

p2k
, M) + FH (ν∗

p2k
; ν2k, M) + O(γ 2

2k) with

FH (ν∗
p2k

; ν2k, M) =
∫ m+γ2k

m

FH (ν∗
p2k

, x, M)ν2k(dx)

+
∫ M−γ2k

m+γ2k

FH (ν∗
p2k

, x, M)ν2k(dx)

+
∫ M

M−γ2k

FH (ν∗
p2k

, x, M)ν2k(dx) .
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The first integral term is of the orderO(γ 2
2k) (sinceFH (ν∗

p2k
, m, M) = 0 anddFH (ν∗

p2k
, z,

M)/dz|z=m = 0), the second is bounded by 2α2kF
∗ + O(γ 2

2k), as in case (a). For the
third term, for which x is close to M , we can use the linear approximation

FH (ν∗
p2k

, x, M) = (x − M)
dFH (ν∗

p2k
, z, M)

dz |z=M
+ O(γ 2

2k)

= −2(x − M)

p2k(1 − p2k)2(M − m)
+ O(γ 2

2k)

which gives
∫ M

M−γ2k

FH (ν∗
p2k

, x, M)ν2k(dx) = 2

p2k(1 − p2k)2(M − m)
I2k(M) + O(γ 2

2k)

where I2k(M) = ∫ γ2k

0 zν′
2k(dz) with ν′

2k the measure obtained after applying the trans-
formation x �→ z = M − x. We have thus obtained

H(ν2k, M) < 1 + 2α2kF
∗ + 2I2k(M)

p2k(1 − p2k)2(M − m)
+ O(γ 2

2k) . (34)

Consider now the behavior of I2k(M) as k increases. We assume that ν2k remains in
some neighborhood V(p) of ν∗

p, which we shall be able to guarantee afterwards. De-
fine A2k(M) = I2k(M)[

∫ γ2k

0 ν′
2k(dz)]−1. It satisfies I2k(M) < A2k(M) < γ2k . Also,

γ2(k+1) < γ2k implies

A2(k+1)(M) =
∫ γ2(k+1)

0 zH(ν2k, M − z)ν′
2k(dz)

∫ γ2(k+1)

0 H(ν2k, M − z)ν′
2k(dz)

<

∫ γ2k

0 zH(ν2k, M − z)ν′
2k(dz)

∫ γ2k

0 H(ν2k, M − z)ν′
2k(dz)

,

and, since H(ν2k, M − z) decreases for z close to zero,

A2(k+1)(M) <

∫ γ2k

0 z
H(ν2k,M−z)
H(ν2k,M)

ν′
2k(dz)

∫ γ2k

0 ν′
2k(dz)

.

We can bound the speed of decrease of H(ν2k, M −z): H(ν, M −z)/H(ν, M) < 1−az

for some a > 0, any z in [0, γ0] and any ν ∈ V(p). This gives

A2(k+1)(M) <

∫ γ2k

0 z(1 − az)ν′
2k(dz)

∫ γ2k

0 ν′
2k(dz)

.

Repeating the same arguments we get for any n > 0,

A2(k+n)(M) < Ā2(k+n)(M) =
∫ γ2k

0 z(1 − az)nν′
2k(dz)

∫ γ2k

0 ν′
2k(dz)

,

with Ā2(k+n)(M) decreasing with n. Direct calculation gives
∑∞

n=0 Ā2(k+n)(M) = 1/a,
and therefore I2k(M) < Ā2k(M) = o(1/k).

Similarly to case (a), we can write

H(ν2k, M − γ2(k+1)) = H(ν2k, M) − 2γ2(k+1)

p2k(1 − p2k)(M − m)
+ O(γ 2

2k) ,
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with H(ν2k, M) bounded by (34). Assume that γ2k is such that Ā2k(M) = o(γ2k) and
α2k = o(γ2k). We obtain for p2k close enough to p

H(ν2k, M − γ2(k+1)) < β2(k+1) = 1 − γ2(k+1)

p(1 − p)(M − m)
. (35)

We thus get the following bounds on the measure of subintervals of interest at the next
iteration:

ν2(k+1){(m + γ2(k+1), M − γ2(k+1)]} < 2 max{β2(k+1), K0}α2k (36)

where K0 = maxν2k∈V(p) max
λ∈SA∩(µ2k

1 ,µ2k+1
1 )

H(ν2k, λ), and K0 < 1 for p in Is and

V(p) small enough, see part (a);

ν2(k+1){(M − γ2(k+1), M]} < ν2(k+1){(M − γ2k, M]}
< H(ν2k, M)ν2k{(M − γ2k, M]}
<

[
1 + 2α2kF

∗ + 2Ā2k(M)

p2k(1 − p2k)2(M − m)
+ O(γ 2

2k)

]
ν2k{(M − γ2k, M]}

< ν2k{(M − γ2k, M]} + Bα2k + CĀ2k(M) + Dγ 2
2k

for some B, C, D < ∞. Similarly, we obtain

ν2(k+1){[m, m + γ2(k+1)]} < ν2k{[m, m + γ2k]} + Bα2k + CĀ2k(m) + Dγ 2
2k

where Ā2k(m) is defined similarly to Ā2k(M). Define p2(k+1) as

p2(k+1) = ν2(k+1){[m, m + γ2(k+1)]} − ν2(k+1){(M − γ2(k+1), M]} + 1

2
,

it gives

0 < p2(k+1) − ν2(k+1){[m, m + γ2(k+1)]} < max{β2(k+1), K0}α2k ,

0 < 1 − p2(k+1) − ν2(k+1){(M − γ2(k+1), M]} < max{β2(k+1), K0}α2k .

Together with (36) it implies d(ν2(k+1), ν
∗
p2(k+1)

) < γ2(k+1) < γ2k , with

|p2(k+1) − p2k| < 
2k = [B + 1 + max{β2(k+1), K0}]α2k + CĀ′
2k + Dγ 2

2k ,

where Ā′
2k = max{Ā2k(m), Ā2k(M)} and

∑
k Ā′

2k < ∞.
Define α2(k+1) = max{β2(k+1), K0}α2k and take γ2k = 1/kq with q < 1, so that

Ā′
2k = o(γ2k). From the definition of β2(k+1), see (35),

∑
k α2k < ∞ and α2k = o(γ2k).

Since
∑

k Ā′
2k < ∞, taking q > 1/2 in the definition of γ2k ensures

∑
k 
2k < ∞.

We can repeat the same argument, and d(ν2(k+n), ν
∗
p2(k+n)

) < γ2(k+n) which tends to
zero as n increases, with |p2(k+n) − p2k| remaining finite. ν2(k+n) thus remains in some
neighborhood V(p) of ν∗

p for any n, and V(p) can be made arbitrarily small by choosing
α0 and γ0 small enough. ��
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A5. Proof of Theorem 6. Assume that x0 is such that for some k ≥ 0, ‖gk+1‖ = 0
with ‖gi‖ > 0 for all i ≤ k (that is, xk+1 = x∗ and xi = x∗ for i ≤ k). This implies
Rk(W) = 0 for any W , and therefore R(W, x0, x

∗) = R(x0, x
∗) = 0.

Assume now that ‖gk‖ > 0 for all k. Consider

Vn =
[

n−1∏

k=0

Rk(W)

]1/n

=
[

n−1∏

k=0

(Wgk+1, gk+1)

(Wgk, gk)

]1/n

=
[
(Wgn, gn)

(Wg0, g0)

]1/n

.

We have,

∀z ∈ H , c‖z‖2 ≤ (Wz, z) ≤ C‖z‖2 ,

and thus

(c/C)1/n

[
(gn, gn)

(g0, g0)

]1/n

≤ Vn ≤ (C/c)1/n

[
(gn, gn)

(g0, g0)

]1/n

.

Since (c/C)1/n → 1 and (C/c)1/n → 1 as n → ∞, lim infn→∞ Vn and lim supn→∞
Vn do not depend on W . Take W = P(A); it gives Rk(W) = rk = 1 − 1/Lk , see (9),
which is not decreasing, and thus limn→∞ Vn = 1 − 1/L for any W . ��
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