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The paper makes a connection between classical dynamical systems, namely the Gauss
map and the associated Farey map, and symmetric second-order line search, of which
the classical Golden-Section and Fibonacci search methods are particular cases. The main
result is an expression for the actual finite sample rate for symmetric line-search algorithms
in terms of the continued fraction expansion of the first observation point. This yields
formulae for asymptotic rates in the almost sure ergodic case and exact rates for the two
special cases, (i) the rational case when the algorithm stops and (ii) the cyclic case which
corresponds to quadratic irrationality. The asymptotic rate is sub-exponential for almost all
starting points. Moreover, the dynamical system suffers so-called chaos with intermittency,
typical of systems which have fairly normal (exponential) expansion punctuated by periods
of very slow expansion. The property follows immediately through the link with the Farey
map which has slow growth close to zero.
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1. Introduction

This paper is a contribution to a series studying dynamical systems embedded within
certain search algorithms (Pronzato et al., 1997, 1998, 1999). This is a new area in
that it describes kind of stochasticity different from what is commonly considered as a
random algorithm, for example arising in graph theory or in Markovian algorithms such as
simulated annealing or genetic algorithms.

The paper makes a surprising connection between classical dynamical systems, namely
the Gauss map and the associated Farey map, and a special kind of line search. The
latter shares a symmetry property with the classical Golden-Section and Fibonacci search
methods. Unlike previous work by the authors, which concentrates on the path of the
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optimum after a renormalization, this paper covers the path of the observation points.
Some progress towards the ideas of this paper appeared in Wynn & Zhigljavsky (1993a).
The main result is to give a formula for the actual finite sample rate for symmetric line
search in terms of the continued fraction expansion of the first observation point. This leads
to asymptotic rates in the almost sure ergodic case (based on the Gauss map’s invariant
measure) and exact rates for the two special cases, (i) the rational case when the algorithm
stops and (ii) the cyclic case which corresponds to quadratic irrationality.

This represents a more or less complete analysis of the rates of convergence for a
symmetric line-search algorithm. Except for particular cases (zero Lebesgue measure for
the starting point) such as the Golden-Section case, the other asymptotic rates are sub-
exponential. Moreover, they suffer so-called chaos with intermittency, typical of systems
which have fairly normal (exponential) expansion punctuated by periods of very slow
expansion. Such behaviour is commented upon in various work in optimization where one
is encouraged to take care in the initialization of a symmetric algorithm, even the Golden
Section, after each iterate. The property follows immediately through the link with the
Farey map which has slow growth close to zero.

The paper is organized as follows. Section 2 briefly introduces second-order line
search, with the Golden-Section and Fibonacci algorithms as particular symmetric cases.
A renormalization of variables in [0, 1] is used in Section 3, and we show in Section 4
how the dynamical system we associate with a symmetric algorithm is related to the Farey
map. The relation between symmetric line search algorithms and continued fractions is
investigated in Section 5.

2. Optimization based on comparisons of function values

2.1 Second-order line search

We consider the minimization of a uniextremal function f (·) on a given interval [A1, B1]
using a second-order algorithm, as defined by Kiefer (1957). Let x∗ be the unknown point
at which f (·) is minimum. We assume that f (·) is decreasing for x � x∗ and non-
decreasing for x > x∗ (or non-increasing for x � x∗ and increasing for x > x∗). If
these conditions on f (·) are not satisfied, then convergence to a local minimum of f (·) in
[A1, B1] may occur.

At iteration n we compare the values of f (·) at two points Un and Vn in the current
uncertainty interval [An, Bn], with Un < Vn . Then, after this iteration if f (Un) � f (Vn)

we delete [An, Un); otherwise we delete (Vn, Bn]. Note that, in a practical implementation
of the algorithm, both [An, Un) and (Vn, Bn] can be deleted in the case where f (Un) =
f (Vn), but the algorithm should then be re-initialized. (This will not be considered here
because it has no effect on the performance characteristics that are considered.) The
remaining part of the interval defines the uncertainty interval [An+1, Bn+1] for the next
iteration; see Fig. 1 in which (R) and (L) stand, respectively, for right and left deletion.
In each case, one of the two points Un, Vn is carried forward to [An+1, Bn+1]. Let En+1
denote this point. At iteration n + 1 we compare f (En+1) to the value of f (·) at a new
point E ′

n+1.
A second-order line-search algorithm is therefore defined by the choice of the

(i) initial uncertainty interval [A1, B1],
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FIG. 1. One iteration in second-order line search.
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FIG. 2. Ln(E1)/L1 as a function of E1, n = 2, . . . , 7, for a symmetric algorithm.

(ii) initial test-point E1 ∈ (A1, B1),
(iii) selection rule for E ′

n+1, n � 0.

The reduction rate at iteration n is defined as rn = Ln+1/Ln , where Lk = Bk − Ak is
the length of the uncertainty interval at iteration k, so that

Ln = Ln(E1) = L1

n−1∏
i=1

ri , n = 2, . . . .

A symmetric algorithm corresponds to the case where E ′
n is selected according to the rule

E ′
n = An + Bn − En . In that case, the length Ln does not depend on the sequence of (R)

and (L) deletions and is thus independent of the objective function f (·). It depends only
on E1. Figure 2 presents Ln/L1 as a function of E1 for n = 2, . . . , 7.

The most famous second-order line-search algorithms are the Fibonacci and the
Golden-Section (GS) algorithms. Both are symmetric.
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2.2 GS and Fibonacci algorithms

The well-known GS algorithm is defined by

E1 = A1 + ϕL1,

E ′
n =

{
An + ϕLn if En = An + (1 − ϕ)Ln

An + (1 − ϕ)Ln if En = An + ϕLn
(1)

where Ln = Bn − An and where ϕ = (
√

5 − 1)/2 � 0·618 04 is the largest root of
ϕ2 + ϕ − 1 = 0 and is called the GS ratio. This algorithm is known to be asymptotically
worst-case optimal in the class of all uniextremal functions (see Kiefer (1957) and Du &
Hwang (1993) Theorem 9.2.2, p. 181). We come back to this point in Section 5.3. The
convergence rate at iteration n satisfies rn = ϕ, ∀n � 1, so that Ln = L1ϕ

n−1. When the
number of function evaluations is fixed a priori, say equal to N , the worst-case optimal
algorithm, in the sense of L N , is the Fibonacci algorithm (Kiefer, 1957), for which

E1 = A1 + FN

FN+1
L1,

E ′
n = An + Bn − En,

where (Fi )
∞
i=1 = {1, 1, 2, 3, 5, 8, 13, . . . } is the Fibonacci sequence, defined by F1 =

F2 = 1 and Fn = Fn−1 + Fn−2, n > 2. The algorithm satisfies

rn = FN+1−n

FN+2−n
, 1 � n < N ,

Ln = L1
FN+2−n

FN+1
, 1 � n � N .

(see Fig. 3). The algorithm stops at n = N , so that one can define rn = 1 and Ln = L N

for n � N . Note that in the last iteration one assumes that the two test points coincide. In
practice they should be chosen as close as possible. From the recurrence defining Fn , we
obtain

Fn = (1 + ϕ)n − (−ϕ)n

√
5

.

When N tends to infinity, the ratio of L N for the GS algorithm to L N for the Fibonacci
algorithm tends to (2 + ϕ)/

√
5 � 1·170 82.

3. Renormalization

Consider the line-search algorithms of the previous section. After left or right deletion,
we renormalize each uncertainty interval [An, Bn] to [0, 1]. Thus introduce normalized
variables in [0, 1]

xn = x∗ − An

Ln
,

en = En − An

Ln
, e′

n = E ′
n − An

Ln
,
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FIG. 3. Five iterations of the Fibonacci algorithm.

and
un = min(en, e′

n), vn = max(en, e′
n).

The deletion rule is {
(R): if fn(un) < fn(vn) delete (vn, 1]
(L): if fn(un) � fn(vn) delete [0, un)

with
fn(x) = f (Ln x + An).

The remaining interval is then renormalized to [0, 1]. The successive lengthes of
uncertainty intervals satisfy

Ln+1 =
{

Lnvn (R)

Ln(1 − un) (L)

and therefore

rn =
{

vn (R)

1 − un (L).

Straightforward calculation shows that right and left deletions, respectively, give

xn+1 =




xn

vn
(R)

xn − un

1 − un
(L).

Moreover, from the definition of En+1, we obtain

en+1 =




un

vn
(R)

vn − un

1 − un
(L).
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FIG. 4. Typical chaotic sequence of iterates (xn , xn+1), n = 1, . . . , 100 000, in a symmetric algorithm.

Figure 4 presents a plot of a typical sequence of iterates (xn, xn+1), n = 1, . . . , 100 000
for a non-periodic symmetric algorithm, with xn the renormalized location of x∗.

The GS algorithm corresponds to

vn = 1 − un = ϕ,

which gives xn+1 = hn(xn), with

hn(xn) =
{

xn(1 + ϕ) if fn(1 − ϕ) < fn(ϕ) (R)

xn(1 + ϕ) − ϕ if fn(1 − ϕ) � fn(ϕ) (L).

The ergodic behaviour of this dynamical system is studied in Wynn & Zhigljavsky (1993b)
in the case where f (·) is symmetric with respect to x∗. We show in Pronzato et al. (1995)
that this ergodic behaviour is the same for functions that are only locally symmetric.

4. Relation with Farey map

In the case of a symmetric algorithm one has for every n

e′
n = 1 − en .

This last condition implies un = 1−vn , which gives both for the (R) and (L) cases rn = vn

and

rn+1 =




1 − rn

rn
if 1

2 � rn < 2
3

2 − 1

rn
if 2

3 � rn � 1
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FIG. 5. The Farey map.

with the sequence (rn) living in [ 1
2 , 1]. Note that the updating formula for rn implies by

induction that, for fixed n, the function Ln(E1)/L1 in Fig. 2 is piecewise linear.
The variable zn obtained by the simple transformation zn = (1/rn) − 1 follows the

dynamical system zn+1 = T (zn), with T (·) given by (7) below, that is the Farey map.
However, we shall not pursue this connection but use a different one.

Neither the shape of the objective function, nor the location of x∗ has any effect
on the behaviour of (rn). We can thus assume for simplicity that the objective function
monotonously increases, so that the rule (R) always applies. Then, the evolution of (en)

becomes

en+1 = un

vn
=




en

1 − en
if 0 � en < 1

2

1 − en

en
if 1

2 � en � 1
(2)

which is exactly the Farey map (see Bowen, 1979), presented in Fig. 5. The associated
sequence of rates is

rn =
{

1 − en if 0 � en < 1
2

en if 1
2 � en � 1.

The Frobenius–Perron equation for the dynamical system en �→ en+1 = T (en) is given
by

φ(e) = 1

(e + 1)2

(
φ

(
e

e + 1

)
+ φ

(
1

e + 1

))
,

which has solution

φ(e) = 1

e
, 0 < e < 1. (3)
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The fact that the invariant measure above is not finite is related to the slope of the mapping
T (·) being unity at zero, a fixed point of the mapping, which causes non-exponential
divergence of the trajectories. Such a map is called almost expanding, which relates to
the phenomenon of chaos with intermittency. This term is used to describe the occasional
regular behaviour of the trajectories which occurs in the present case near zero.

Note that any statement on the asymptotic behaviour of (en) deriving from the Farey
map can be reformulated in terms of the behaviour of (rn). For example, the invariant
density for (rn) is

φ(r) = 1

r(1 − r)
, 1

2 � r < 1. (4)

The behaviour (and the convergence rate) of the symmetric algorithm is completely
determined by e1. We show later that the best asymptotic convergence rate is for the
GS algorithm, that is, when e1 = ϕ, the Golden Section. The relation between the rate
sequence (rn) and the Farey map will be exploited further in Section 5.2.

5. Relation with continued fractions

5.1 Continued fraction expansion

Any irrational number α in [0, 1) has a unique continued fraction expansion of the form

α = [a1, a2, . . . ] = 1

a1 + 1
a2+ 1

a3+···

,

where the partial quotients a1, a2, . . . are positive integers. For any n, there exists a unique
εn+1 ∈ (0, 1), such that

α = [a1, a2, . . . ] = [a1, a2, . . . , an + εn+1] = 1

a1 + 1
a2+··· 1

an+εn+1

.

The sequence (εn) follows the dynamical system

ε1 = α

ε2 =
{

1

ε1

}
= 1

ε1
−

⌊
1

ε1

⌋
···

εn+1 =
{

1

εn

}
= 1

εn
−

⌊
1

εn

⌋
(5)

where {x} is the fractional part and �x� the integer part of x . For each n, the partial quotient
an is an = �1/εn�.
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The continued fraction expansion for a rational number α is finite and non-unique:

α = [a1, a2, . . . , an] =
{

[a1, a2, . . . , an − 1, 1] if an > 1,

[a1, a2, . . . , an−1 + 1] if an = 1.

Note that one can also write (see Schoisengeier, 1990)

α = [a1, a2, . . . , an] = [a1, a2, . . . , an, ∞]. (6)

The dynamical system εn �→ εn+1 = T (εn) = {1/εn}, defined by (5) is called the
Gauss map. Its invariant density is

φ(x) = 1

(1 + x) log 2
, x ∈ [0, 1).

It describes the asymptotic behaviour of εn for almost all α in [0, 1).
Continued fractions can be related to other dynamical systems in various ways, as a

consequence of the relationship to the Gauss map. First consider the map

T1(x) =
{

1/x if 0 < x � 1

x − 1 if 1 < x

defined on (0, ∞). Starting with α ∈ (0, 1) and iterating, we immediately jump to the
second branch and remain there until switching back to the first branch with the value
{1/α} = 1/α − �1/α�. This is repeated so that at the nth switch back to the first branch
we have the same εn as in the Gauss map. Moreover, the number of iterations spent in the
second branch is precisely an = �1/εn�.

For the iteration just before coming to the first branch, the process is in (1, 2]. Consider
a reduced mapping T2(·), obtained by joining two iterations of T1(·) when x ∈ (1, 2]. We
have

T2(x) =
{

T1[T1(x)] = 1/(x − 1) if 1 < x � 2

T1(x) = x − 1 if 2 < x .

Now, the change of variable e = 1/x in T2(·) gives the Farey map presented in Fig. 5,
(see (2))

T (e) =
{

e/(1 − e) if 0 < e < 1
2

(1 − e)/e if 1
2 � e < 1.

(7)

Note that the number of iterations spent in the second branch of T2(·) before reaching the
first, and in the first branch of T (·) before reaching the second, is an − 1 = �1/εn� − 1.

5.2 Ln as a function of e1

The following theorem gives the expression of the length of the uncertainty interval
[An, Bn] for a symmetric algorithm as a function of the continued fraction expansion of
e1. Note that the expression is valid for any objective function on which the line-search
algorithm is applied.
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THEOREM 1 Consider a symmetric second-order line-search algorithm, initialized at e1
with continued fraction expansion e1 = [a1, a2, . . . ]. Define

n0 = 0, n j =
j∑

i=1

ai , j � 1. (8)

Then, for any N such that n j � N < n j+1, j � 0,

L N+1 = L1 × ε0 × · · · × ε j × [1 − (N − n j )ε j+1], (9)

where ε0 = 1, ε1 = e1 and ε j+1 = {1/ε j }, j � 1.

Proof. We assume that e1 < 1
2 . The case e1 > 1

2 could be treated similarly. Recalling
the relation between the Farey and continued fraction maps, we notice that between two
successive visits to the interval [ 1

2 , 1], say the j th and ( j + 1)th, the sequence (2) spends
a j+1 − 1 iterations in [0, 1

2 ). The subsequence (en j ), with n j given by (8), then contains

all terms of the sequence (en) that belong to [ 1
2 , 1). Moreover, for j � 0 en j +1 exactly

coincides with ε j+1 in the Gauss-map sequence (ε j ), defined by ε j+1 = {1/ε j } and ε1 =
e1. Also, if we consider N = n j iterations of the algorithm (2), then we arrive at the
point en j +1 = ε j+1 and the length of the unnormalized uncertainty interval after these N
iterations is equal to

Ln j +1 = L1 × r1 × · · · × rn j = L1 × ε1 × · · · × ε j . (10)

This can be proved as follows.
Let j = 0, and compute the reduction rate in n1 iterations, from en0+1 = e1 = ε1 to

en1+1 = ε2. The length of the uncertainty interval then becomes

Ln1+1 = Ln0+1 × rn0+1 × · · · × rn1 .

As {
ei < 1

2 and ri = 1 − ei , i = n0 + 1, . . . , n1 − 1,
1
2 � en1 and rn1 = en1 ,

one obtains by induction

ei = e1

1 − (i − 1)e1
, ri = 1 − ie1

1 − (i − 1)e1
, i = n0 + 1, . . . , n1 − 1, (11)

and rn1 = en1 = en0+1/[1 − (n1 − 1)en0+1]. Therefore,

Ln1+1 = Ln0+1e1 = Ln0+1ε1.

The same arguments generalize to arbitrary j � 1, and Ln j +1 = Ln j−1+1ε j , which
gives (10). Finally, using (11), one can easily find the value of L N+1 for arbitrary N ,
that is equation (9) for n j � N < n j+1. �
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Theorem 1 implies in particular that, when e1 is a rational in [0, 1), the length of the
uncertainty interval remains constant after some iteration. Indeed, one can write e1 =
[a1, . . . , am, ∞] (see equation (6)). This gives εm+1 = 0, nm+1 = ∞, and thus from
equation (9)

L N+1 = L1 × ε1 × · · · × εm

for any N � N∗ = a1 + · · · + am . Thus, for rational e1, the algorithm terminates
(degenerates) at a certain iteration N∗, where N∗ = a1 + · · · + am could also be defined as
the first n such that en = 1. (Recall that we assume that at the last iteration we halve the
uncertainty interval by making the two last observations at the same point, the midpoint of
the interval.)

Because the termination point N∗ is a function of e1 we need to be careful in the
specification of the sample size of the algorithm. If we set N > N∗ then there is no
further improvement after N∗ so that the per iteration rate will have declined. However,
we have the option of deciding in advance that the number of iterations is N = N∗ and
then controlling e1 to produce mine1 L N (e1), the minimal length of the uncertainty interval
in N iterations. Fortunately, the case N = N∗ gives a nice expression for the value of
L N (e1) in terms of the so-called Farey tree (see definitions below and Corollary 1) and the
value of e1 where the minimum mine1 L N (e1) is achieved (see Corollary 2).

Consider the mediant med(p/q, p′/q ′) of two fractions p/q and p′/q ′,
med(p/q, p′/q ′) = (p + p′)/(q + q ′), where p, p′, q and q ′ are positive integers. One
can easily check that for p/q < p′/q ′, med(p/q, p′/q ′) always belongs to the interval
(p/q, p′/q ′).

The Farey tree (also called Brocot sequence; see Lagarias, 1992) Fn of order n is
defined inductively as follows. F0 consists of two elements, zero and unity written as 0/1
and 1/1. Then at iteration n, for every pair {p/q, p′/q ′} of adjacent fractions in Fn−1,
their mediant med(p/q, p′/q ′) is added to the elements of Fn−1. Thus,

Fn = Fn−1

⋃
med (p/q, p′/q ′),

where the union is taken over all adjacent pairs {p/q, p′/q ′} in Fn−1. For example,

F1 = {
0, 1

2 , 1
}
, F2 = {

0, 1
3 , 1

2 , 2
3 , 1

}
, F3 = {

0, 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 1

}
.

One can easily check (see Schroeder, 1991, p. 337 and Cornfeld et al., 1982) that there are
exactly 2n−1 Farey fractions of level n, i.e. elements in Fn \ Fn−1, and all of them have
a finite continued fraction representation p/q = [a1, a2, . . . , ak] satisfying a1 + · · · +
ak = n. Also, the number of elements in Fn is |Fn| = 2n + 1 and these elements, apart
from zero and unity, have a continued fraction representation [a1, a2, . . . , ak] satisfying
a1 + · · · + ak � n.

This gives a characterization of rational starting points e1 such that the corresponding
symmetric line-search algorithm stops at iteration n. Specifically, these points are exactly
the points with a finite continued fraction representation e1 = [a1, a2, . . . , ak] with a1 +
· · · + ak = n and therefore are exactly the Farey fractions of level n.

If we return to Fig. 2 and consider the function Ln(e1) for a given n, we observe that it
is piecewise linear, with 2n−1 local minima at the Farey fractions of level n and 2n−1 + 1
local maxima at 0, 1 and the Farey fractions of all levels smaller than n.

The following property gives the value of L N when the algorithm degenerates.
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COROLLARY 1 Let [A1, B1] = [0, 1] and e1 ∈ [0, 1] be a rational number e1 = p/q with
gcd (p, q) = 1 and continued fraction expansion e1 = [a1, a2, . . . , ak], ∑k

i=1 ai = N∗.
Then L N (e1) = 1/q for all N � N∗.

Proof. Consider the sequence ε1, ε2, . . . with ε1 = e1 = p/q. Then

ε2 = 1

ε1
− a1 = q

p
− a1 = q − pa1

p
= p2

p1
,

where p1 = p and p2 = q − pa1 is some integer such that p2 < p1 and gcd (p1, p2) = 1.
(The fact that p2 < p1 is equivalent to the fact that ε2 < 1.)

Analogously, for all i � k, εi−1 = pi/pi−1 implies εi = pi+1/pi with pi+1 < pi and
gcd (pi+1, pi ) = 1. When i = k − 1, εk−1 = 1/ak so that pk = 1 and pk−1 = ak .

According to (9), εk−1 is the last term we need in the product
∏

i εi for all N � N∗
(because ak+1 = ∞ and εk = 0). The product itself equals

L N+1(e1) =
k−1∏
i=1

εi = p1

q

p2

p1

p3

p2
· · · pk−1

pk−2

1

pk−1
= 1

q
, N � N∗.

�

The Fibonacci algorithm can easily be shown to be optimal among symmetric
algorithms.

COROLLARY 2 (Optimality of the Fibonacci search)
For a fixed N , the minimum

min
e1

L N (e1)

equals 1/FN+1 and is achieved at e1 = FN /FN+1 or e1 = FN−1/FN+1, where F1, F2, . . .

is the Fibonacci sequence.

Proof. Without any loss of generality we restrict our attention to the case e1 > 1
2 . As

noted in Section 4, the function L N (e1) is piecewise linear on [ 1
2 , 1] (see Fig. 2). It takes

its minimum and maximum values at the rational e1 = p/q with gcd (p, q) = 1 and
continued fraction expansion e1 = [a1, a2, . . . , ak] such that

∑k
i=1 ai � N .

According to Corollary 1, L N (e1) = 1/q at these points. However, one of the
properties of the Farey tree is that the maximum value of the denominator q among all the
points p/q with gcd (p, q) = 1 and continued fraction expansion p/q = [a1, a2, . . . , ak]
such that

∑k
i=1 ai � N , is achieved when p/q = FN /FN+1. This property can easily be

proved by induction (see also Schroeder, 1991, p. 339). �

5.3 Asymptotic performance

Using (9), we can easily evaluate the performance of any symmetric algorithm in terms of
the asymptotic convergence rate R defined as follows:

R(e1) = lim sup
N→∞

[L N+1(e1)] 1
N = lim sup

N→∞

[
L1

N∏
n=1

rn(e1)

] 1
N

. (12)
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Because L1 < ∞ this becomes

R(e1) = lim sup
N→∞

[
N∏

n=1

rn(e1)

] 1
N

.

In what follows we assume, without any loss of generality, that L1 = 1.
The algorithm has exponential convergence if R(e1) < 1 − α for some α > 0.

Corollary 3 shows how the asymptotic rate of convergence of the algorithm is related to
the choice of e1.

COROLLARY 3 The convergence of the asymmetric algorithm initialized at e1 ∈ (0, 1) is,

(i) sub-exponential if e1 is a rational number (in this case, the algorithm is such that the
two test points En, E ′

n coincide at some iteration n).
(ii) exponential if e1 is a badly approximable number, that is a number with bounded

partial quotients,
(iii) sub-exponential for almost all values of e1.

Proof.
(i) We have seen in Section 5.2 that, when e1 is rational, Ln(e1) remains constant for n

larger than some N , and therefore R(e1) = 1.
(ii) When e1 is a badly approximable number, one has e1 = [1, a1, a2, . . . ] with ai < A

for all i and some A < ∞. (Note that unlike the set of quadratic irrationals, the set
of badly approximable numbers is uncountable. However, it still has zero Lebesgue
measure.) From (10), we obtain

R(e1) = lim sup
j→∞

(ε1 × · · · × ε j )
1/n j ,

with n j defined by (8). Therefore,

R(e1) � lim sup
j→∞

(ε1 × · · · × ε j )
1/( j A).

From the recurrence εi+1 = {1/εi }, we obtain εiεi+1 < ϕ. Indeed, the result is
obvious for εi � ϕ, and εi > ϕ implies εi+1 = 1/εi − 1 < ϕ. Therefore,

R(e1) � ϕ1/(2A) < 1,

and the convergence is exponential.
(iii) Ergodic arguments can be used to show that for almost all values of e1 the

convergence is sub-exponential. Indeed, for almost all e1, the dynamical system (2)
has the invariant density of the Farey map given by (3), and the density of the
sequence (rn) is (4). These densities are not normalized; however, they can be
used to construct the proportion of points falling in different intervals. Consider
in particular the interval Iδ = [1 − δ, 1), 0 < δ < 1

2 , and let nδ denote the number
of points ri , i = 1 . . . , n, in Iδ . Then nδ/n tends to unity for any δ. This gives

R(e1) = lim sup
n→∞

(r1 × · · · × rn)1/n

> lim sup
n→∞

[(1 − δ)nδ ( 1
2 )n−nδ ]1/n = 1 − δ

for any δ. Therefore R(e1) = 1 for almost all e1.
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�

As a complement to the case (iii) above, notice that ergodic properties of the Gauss
map imply (see Cornfeld et al., 1982) that the limit

ρ′(e1) = lim
j→∞

1

j

j∑
i=1

log εi

exists for almost all e1 in (0, 1) and equals

ρ′ = ρ′(e1) = π2

12 log 2
� 1·186 569,

which is the Lyapunov exponent for the Gauss map. A consequence of this relation is that
for almost all e1 in (0, 1) for large N

j∏
i=1

εi ∼ exp( jρ′)

which, together with (9), implies L N ∼ exp( jρ′) where j is such that n j � N < n j+1.
Corollary 3(i) does not mean that symmetric algorithms have necessarily poor

performance for finite N (see, for instance, the Fibonacci algorithm, for which e1 =
FN /FN+1 = [1, . . . , 1] with N unities, where (FN ) is the Fibonacci sequence).

A particular case of Corollary 3(ii) is when e1 is a quadratic irrational, i.e. solution
of a quadratic equation with integer coefficients. Its continued fraction expansion is then
periodic, starting with some n (and only quadratic irrationals have this property; see
Rockett & Szüsz, 1992). Let the period be b1, . . . , bk , that is

e1 = [1, a1, . . . , an, b1, . . . , bk︸ ︷︷ ︸, b1, . . . , bk︸ ︷︷ ︸, . . . ].
Then, (10) implies that the ergodic rate of convergence of the corresponding algorithm is

R(e1) = (ε′
1 × . . . ε′

k)
1/(b1+···+bk ),

where

ε′
1 = [b1, . . . , bk︸ ︷︷ ︸, b1, . . . , bk︸ ︷︷ ︸, . . . ]

ε′
2 = [b2, . . . , bk, b1︸ ︷︷ ︸, b2, . . . , bk, b1︸ ︷︷ ︸, . . . ]
···

···
ε′

k = [bk, b1, . . . , bk−1︸ ︷︷ ︸, bk, b1, . . . , bk−1︸ ︷︷ ︸, . . . ].
All the ε′

i values are smaller than unity and the convergence is therefore exponential.
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TABLE 1
Values of R(e1) for different choices of quadratic irrationals e1

e1 R(e1)

ϕ = [1, 1, . . . ] ϕ � 0·61803

2 − √
2 = [1, 1, 2, 2, 2, . . . ]

√√
2 − 1 � 0·64359√

2/2 = [1, 2, 2, 2, . . . ]
√√

2 − 1 � 0·64359√
3 − 1 = [ 1, 2︸︷︷︸, 1, 2︸︷︷︸, . . . ] (

√
3 − 2)1/3 � 0·64469

√
3/3 = [1, 1, 2︸︷︷︸, 1, 2︸︷︷︸, . . . ] (

√
3 − 2)1/3 � 0·64469

√
10/2 − 1 = [1, 1, 2︸ ︷︷ ︸, 1, 1, 2︸ ︷︷ ︸, . . . ] (

√
10 − 3)1/4 � 0·63469

(
√

10 − 1)/3 = [1, 2, 1︸ ︷︷ ︸, 1, 2, 1︸ ︷︷ ︸, . . . ] (
√

10 − 3)1/4 � 0·63469

FIG. 6. Typical chaotic sequence of iterates (xn , rn), n = 1, . . . , 100 000, in a symmetric algorithm.

A famous example is the GS algorithm, for which e1 = ϕ = [1, 1, . . . ], which
gives R(e1) = ϕ � 0·618 03. More generally, the same value for R is obtained when
e1 is a so-called noble number, that is, when e1 has a continued fraction expansion
e1 = [a1, . . . , an, 1, 1, . . . ] all ending in unity (see Schroeder, 1991, p. 392). Some other
examples are given in Table 1.

Figure 6 presents a plot of a typical sequence of iterates (xn, rn), n = 1, . . . , 100 000
for a non-periodic symmetric algorithm, corresponding to Corollary 3(iii). This propery has
the important consequence that a direct implementation of a symmetric algorithm, based on
the application of the rule E ′

n = An +Bn −En yields sub-exponential convergence (R = 1)

due to numerical inaccuracies. In particular, this is the case for the GS algorithm; hence
the usual recommendation to use the implementation (1). Note that among symmetric
algorithms, R(e1) is minimum when e1 = ϕ, the Golden Section. This follows from
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Corollary 2 and the fact that

Ln(ϕ)

Ln(Fn/Fn+1)
→ 2 + ϕ√

5
, n → ∞,

(see Section 2.2).
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