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Abstract The behaviour of the standard steepest-descent algorithm for a quadratic
function in IRd is investigated. We show that by rescaling the iterates to remain always
on the unit sphere one can reveal special features of this behaviour. The renormalized
algorithm is shown to converge to a two-point cycle on the unit circle. The cycle depends
on the starting point in a complicated manner (the set of points converging to the same
cycle is fractal), but all cycles belong to a particular plane, given by certain eigenvectors
of the Hessian matrix of the objective function. The stability of the attractor is analysed.
The rate of convergence of the algorithm is investigated. It is shown that the worst value
of this rate is obtained only for some particular starting points. The introduction of a
relaxation coefficient in the steepest-descent algorithm completely changes its behaviour,
which may become chaotic. Different attractors are presented. We show that relaxation
allows a significantly improved rate of convergence.

1 Introduction: an unsolved problem

For a general smooth function f(·) the steepest-descent algorithm is

x(k+1) = x(k) − αk∇f(x(k)) , (1)

where
x(k) =

(
x

(k)
1 , . . . , x

(k)
d

)T

is the k-th iterate of the algorithm,

∇f(x) =

(
∂f

∂x1

, . . . ,
∂f

∂xd

)T
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is the gradient of f(·), and

αk = arg min
α

f(x(k) − α∇f(x(k)) .

In [?] the authors studied the asymptotic behaviour of this algorithm for a quadratic
function in IRd:

f(x) =
1

2
(x− x∗)T A(x− x∗) ,

where x, x∗ ∈ IRd and A is a positive definite d×d matrix. This seemingly simple problem
has some very complex aspects which are uncovered by the following renormalization idea.
Define

v(k) =
x(k) − x∗

||x(k) − x∗|| , (2)

which has the effect of rescaling the iterates to remain always on the unit sphere: ||v|| = 1.
The authors studied the behaviour of the process {v(k)} as k → ∞. Except for

pathological cases, in the limit the process is found to belong to the two dimensional
space spanned by the eigenvectors (u1, ud) corresponding to the minimal and maximum
eigenvalues λ1 and λd of the matrix A under the assumption

0 < λ1 < λ2 ≤ . . . ≤ λd−1 < λd , (3)

where λi is the i-th ordered eigenvalue of A. Ordering the v
(k)
i compatibly with (3), the

conjecture states that v
(k)
i → 0 for i = 2, . . . , d− 1 as k →∞, and that the algorithm, in

its renormalised form, converges to a two-point set on the circle {||v1||2 + ||vd||2 = 1} in
the plane spanned by u1 and ud. Numerical simulations show that the same convergence
property holds for a convex differentiable function locally quadratic around its minimum
x∗. It has been known for many years that the asymptotic convergence rate of the al-
gorithm depends on the ratio ρ = λd/λ1 (for instance, see [?], p. 152). Thus for any
x(k) ∈ IRd

f(x(k+1)) ≤
(

ρ− 1

ρ + 1

)2

f(x(k)) (4)

(see also Section 4). Despite an intensive search, no more precise properties concerning the
rate of convergence were found in the literature. The authors doubts about the existence
of results on the asymptotic behaviour of the steepest-descent algorithm were increased
by the complexity of the behaviour of the renormalized algorithm en route to the limiting
circle. This behaviour is fractal in nature, and it still remains open how the limiting
asymptotic rate depends on the starting values. It is the worst-case rate, given by (4),
not the actual rate, which simply depends on λ1 and λd. However we are able to show
that the algorithm attracts to two “conjugate” points on the circle. It is easy to check
that starting on the circle the renormalized algorithm oscillates between the points, but
without attraction to the circle this limiting behaviour is only a conjecture. We shall
return to the discussion of these conjugate points and the corresponding asymptotic rate
of convergence in Sections 3 and 4 respectively. The behaviour of the steepest-descent
algorithm with relaxation is considered in Section 5.
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2 Attraction theorem

Theorem 1 Let the objective function f be

f(x) =
1

2
(x− x∗)T A(x− x∗) , (5)

where A is a positive definite matrix with ordered eigenvalues 0 < λ1 < λ2 ≤ . . . ≤
λd−1 < λd. Let V = span(u1, ud) be the two-dimensional plane generated by the (distinct
orthogonal) eigenvectors u1, ud corresponding to λ1 and λd, respectively. Then for any
starting vector x(1) for which

uT
1 v(1) 6= 0 and uT

d v(1) 6= 0 (6)

the algorithm attracts to the plane V in the following sense:

wT v(k) → 0 k →∞

for any non-zero vector w ∈ V ⊥, where v(k) is defined by (2). Moreover, the sequence
{v(k)} converges to a two-point cycle.

Proof.
For the quadratic function (5) the gradient of f(·) at x(k) equals

g(k) = ∇f(x(k)) = A(x(k) − x∗) ,

and

αk =
(g(k))T g(k)

(g(k))T Ag(k)
.

Therefore, the algorithm (1) can be rewritten as

x(k+1) = x(k) − (g(k))T g(k)

(g(k))T Ag(k)
g(k) . (7)

Without loss of generality we can assume that x∗ = 0 and the matrix A is diagonal:
A = diag(λ1, . . . λd) where 0 < λ1 < λ2 ≤ . . . ≤ λd−1 < λd. With this assumption, the
iteration of the algorithm (7) can be written as

x
(k+1)
i = x

(k)
i −

∑d
j=1(g

(k)
j )2

∑d
j=1 λj(g

(k)
j )2

g
(k)
i for i = 1, . . . , d . (8)

Multiplying both sides of i-th equation of (8) by λi we obtain

g
(k+1)
i = g

(k)
i −

∑d
j=1(g

(k)
j )2

∑d
j=1 λj(g

(k)
j )2

λig
(k)
i for i = 1, . . . , d . (9)
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Introduce now the variables
y

(k)
i = (g

(k)
i )2 ,

and their renormalised versions

z
(k)
i =

y
(k)
i∑d

j=1 y
(k)
j

. (10)

Note that z
(k)
i ≥ 0 for i = 1, . . . , d and

∑d
j=1 z

(k)
j = 1. The equations (9) then imply

y
(k+1)
i =


1− λi

∑d
j=1 y

(k)
j

∑d
j=1 λjy

(k)
j




2

y
(k)
i for i = 1, . . . , d ,

and

z
(k+1)
i = z

(k)
i

(∑d
j=1 λjz

(k)
j − λi

)2

∑d
l=1

(∑d
j=1 λjz

(k)
j − λl

)2
z

(k)
l

for i = 1, . . . , d . (11)

Note that the updating formula (11) is exactly the same for the weights z
(k)
i and z

(k)
j

corresponding to equal λi = λj, and therefore these weights can be summed. It follows
that a proof based on the assumption that all λi are different can easily be extended to the
case of ties among λ2, . . . , λd−1. We thus assume that all eigenvalues of A are different:
0 < λ1 < λ2 < . . . < λd. Note also that to prove the convergence to the two-dimensional
plane V for the sequence {x(k)/||x(k)||}, it is enough to prove the same property for the
sequence {z(k)}, k →∞.

We divide the rest of the proof into four parts: we show (i) that the sequence (11)
converges to a two-dimensional plane, (ii) that the directions are eventually fixed, and
(iii) that they fix at u1 and ud. Finally, we show (iv) the convergence to a two-point
cycle. It is convenient to consider the discrete measures

πk =

{
λ1 . . . λd

z
(k)
1 . . . z

(k)
d

}

which place the weights z
(k)
i at the points λi, respectively (i = 1, . . . , d). These measures

carry all information about the sequence (11). Let ψ(·) denote the operator corresponding
to the application of (11) to a measure π, so that πk+1 = ψ(πk).

(i). Define the moments

µm = µm(πk) =
∫

λmdπk(λ) =
d∑

j=1

λm
j z

(k)
j , m = 0,±1,±2, . . . (12)

so that µ0 = 1, µ1 =
∑d

j=1 λjz
(k)
j , etc. Define also the moment matrices Mn = Mn(πk) by

{Mn}j,l = µj+l−2 (j, l = 1, . . . , n) so that

M2(πk) =

(
µ0 µ1

µ1 µ2

)
and M3(πk) =




µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4


 .
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Then the denominator in the right hand side of (11) is

Dk =
d∑

l=1




d∑

j=1

λjz
(k)
j − λl




2

z
(k)
l = µ2 − µ2

1 = det[M2(πk)] .

Using the updating formula (11) we have

Dk+1 =
d∑

l=1




d∑

j=1

λjz
(k+1)
j − λl




2

z
(k+1)
l =

d∑

j=1

λ2
jz

(k+1)
j −




d∑

j=1

λjz
(k+1)
j




2

=
1

Dk

(µ2
1µ2 − 2µ1µ3 + µ4)− 1

D2
k

(µ3
1 − 2µ1µ2 + µ3)

2 .

Therefore

Dk+1 −Dk =
2µ1µ2µ3 + µ2µ4 − µ2

1µ4 − µ2
3 − µ2

2

(µ2 − µ2
1)

2
=

det[M3(πk)]

{det[M2(πk)]}2
.

The conditions (6) transfer through the updating formula (11) to z
(k)
1 > 0 and z

(k)
d > 0

for every k = 1, 2, . . . From simple moment theory we have therefore that the matrix
M2(πk) is positive definite for every k = 1, 2, . . . which implies Dk = det[M2(πk)] > 0.
Also, M3(πk) is a non-negative definite moment matrix and det[M3(πk)] ≥ 0. Thus
Dk+1 − Dk ≥ 0 which means that the sequence {Dk} is monotonously non-decreasing.
Since πk is a probability measure with bounded support, Dk = det[M2(πk)] is bounded
above by some constant D∗ and therefore the sequence {Dk} converges monotonically to
a limit and Dk+1 −Dk → 0 when k →∞. Moreover,

det[M3(πk)] = (Dk+1 −Dk)D
2
k ≤ (Dk+1 −Dk)D

2
∗ ,

so that det[M3(πk)] → 0 when k →∞.
Note that using the Binet-Cauchy lemma

Dk = det[M2(πk)] =
∑

i<j

z
(k)
i z

(k)
j (λj − λi)

2 ≥ D1 > 0 ,

det[M3(πk)] =
∑

i<j<l

z
(k)
i z

(k)
j z

(k)
l (λj − λi)

2(λl − λj)
2(λi − λl)

2 → 0, k →∞ . (13)

For a fixed iteration k define the pair (ik, jk) which achieves maxi<j z
(k)
i z

(k)
j . (If there

are several such pairs, take the smallest of them in, say, lexicographical order.) Then for
every k we have

D1 ≤ Dk ≤ z
(k)
ik

z
(k)
jk

∑

i<j

(λj − λi)
2 .

Therefore
δ ≤ z

(k)
ik

z
(k)
jk

, δ < z
(k)
ik

< 1− δ , δ < z
(k)
jk

< 1− δ , (14)
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where

δ =
D1∑

i<j(λj − λi)2
> 0 . (15)

From (13) we have

det[M3(πk)] ≥ z
(k)
ik

z
(k)
jk

(λjk
− λik)

2
∑

i 6=ik,jk

z
(k)
i (λi − λik)

2(λi − λjk
)2 .

Since all λi are distinct, det[M3(πk)] → 0 and z
(k)
ik

z
(k)
jk
≥ δ > 0, we have

∑

i 6=ik,jk

z
(k)
i → 0, k →∞ . (16)

This finishes part (i) of the proof. The interpretation is that although (ik, jk) depends on
k the total weight associated with all other points tends to zero.

(ii). We will show in addition to (16), that there exists an iteration number k∗ such
that for all k ≥ k∗ the pair (ik, jk) becomes fixed, that is, (ik, jk) = (i∗, j∗) for some
1 ≤ i∗ < j∗ ≤ d and all k ≥ k∗.

Let

ε∗ =
δD1

(λd − λ1)2
,

where δ is defined in (15). According to (16), there exists k∗ = k∗(ε∗) ≥ 1 such that the
total weight associated with all other points different from (ik, jk) is smaller than ε∗ for
all k ≥ k∗. Therefore, for i /∈ {ik, jk} and k ≥ k∗ the updating formula (11) gives

z
(k+1)
i = z

(k)
i

(∑d
j=1 λjz

(k)
j − λi

)2

Dk

<
ε∗(λd − λ1)

2

D1

= δ .

From (14), z
(k+1)
ik+1

> δ and z
(k+1)
jk+1

> δ, and therefore i /∈ {ik, jk} implies i /∈ {ik+1, jk+1}.
This proves that (ik, jk) = (i∗, j∗) for some 1 ≤ i∗ < j∗ ≤ d and all k ≥ k∗.

(iii). Let us prove that (i∗, j∗) = (1, d). Recall again that the assumption (6) and the

updating formula (11) imply that z
(k)
1 > 0 and z

(k)
d > 0 for all k.

Assume that j∗ < d. Denote

ε∗ = min{ε∗, δ min
1≤i<j<d

(λj − λi)/λd} ,

and assume that k∗ = k∗(ε∗) ≥ k∗ is such that (ik, jk) = (i∗, j∗) and the total weight
associated with all other points different from (i∗, j∗) is smaller than ε∗ for all k ≥ k∗.
The existence of such a k∗ follows from (i) and (ii).

For convenience, rewrite the algorithm (11) in the form

z
(k+1)
i = z

(k)
i

(µ1 − λi)
2

Dk

for i = 1, . . . , d , (17)
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and note that

µ1 =
d∑

j=1

λjz
(k)
j = λi∗z

(k)
i∗ + λj∗z

(k)
j∗ +

∑

j 6=i∗,j∗

λjz
(k)
j

≤ λi∗z
(k)
i∗ + λj∗z

(k)
j∗ + λd

∑

j 6=i∗,j∗

z
(k)
j ≤ λi∗z

(k)
i∗ + λj∗z

(k)
j∗ + ε∗λd

≤ δλi∗ + (1− δ)λj∗ + ε∗λd = λj∗ + δ(λi∗ − λj∗) + ε∗λd

≤ λi∗ − δ min
1≤i<j<d

(λj − λi) + ε∗λd ≤ λj∗ .

Therefore (17) implies that for all k ≥ k∗

z
(k+1)
d

z
(k)
d

=
(λd − µ1)

2

Dk

>
(λj∗ − µ1)

2

Dk

=
z

(k+1)
j∗

z
(k)
j∗

.

We have arrived at a contradiction since the sequence {z(k)
j∗ } is bounded from below by

δ > 0 while the sequence {z(k)
d } tends to zero. Thus, j∗ = d and analogously i∗ = 1.

(iv). Finally, let D∗ denote the limit limk→∞ Dk discussed in (i). There are only two
discrete measures π1, π2 with nonzero weights on λ1 and λd and such that

det[M2(π
1)] = det[M2(π

2)] = D∗ ,

namely

π1 =

{
λ1 λd

p 1− p

}
, π2 =

{
λ1 λd

1− p p

}
, (18)

with

p =
1

2
−

√
1

4
− D∗

(λd − λ1)2
.

Note that ψ(π1) = π2 and ψ(π2) = π1. Therefore, convergence of Dk to D∗ implies
convergence of πk to the limiting cycle π1 → π2 → π1 → · · ·

Remark 1 Theorem 1 obviously generalizes to the case where (6) may not be satisfied.
The algorithm then attracts to a two-dimensional plane V ′ and {v(k)} converges to a two-
point cycle. V ′ is defined by the eigenvectors ui, uj associated with the smallest and largest
eigenvalues such that uT

i v(1) 6= 0, uT
j v(1) 6= 0. For the sake of simplicity of notations, we

shall assume in what follows that (6) is satisfied, and therefore ui = u1, uj = ud.

Although the limiting behaviour of the algorithm is simple, its behaviour en route to
the attractor is fairly complicated and presents a fractal structure. Figure 1 shows the
projection onto the plane (v1, v3) of the region of attraction for v(k) to a small neighbour-
hood (radius < 0.02) of the point v∗ = (0.9606, 0, 0.2781), with d = 3, λ1 = 1, λ2 = 2,
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λ3 = 4. It illustrates the difficulty of predicting the limiting behaviour, and thus the
aymptotic rate of convergence, see Section 4, as a function of the starting point.

Possible location of Figure 1

In Figure 2, the grey level of starting points on the unit sphere depends on the limiting
value of p in (18). Again, this illustrates the complexity of the behaviour of the algorithm
on the way to the attractor.

Possible location of Figure 2

3 Stability of attractors

From Theorem 1, the algorithm attracts to two conjugate points on the circle {||v1||2 +
||vd||2 = 1}, characterized by the discrete measure (18). However, some values of p∗

correspond to unstable points. We shall use the following definition of stability, see [?] p.
444.

Definition 1 A fixed point π for a mapping T (·) is called stable if ∀ε > 0, ∃α > 0 such
that ∀π0 for which ‖π0 − π‖ < α, ‖T n(π0) − π‖ < ε for all n > 0. A fixed point π is
unstable if it is not stable.

Consider a two-step iteration for z
(k)
i , 1 ≤ i ≤ d:

z
(k+2)
i = z

(k+1)
i

(
∑d

j=1 λjz
(k+1)
j − λi)

2

Dk+1

= z
(k)
i

(µ1 − λi)
2

Dk

1

Dk+1

(
µ3

1 − 2µ1µ2 + µ3

Dk

− λi

)2

, (19)

and the corresponding transformation ψ2(·) defined by πk+2 = ψ2(πk). Since
∑d

i=1 z
(k)
i = 1

for all k, we substitute 1−∑d−1
i=1 z

(k)
i for z

(k)
d in (19). This defines an operator φ(·) : Sd−1 7→

Sd−1 on the (d− 1)-dimensional canonical simplex

Sd−1 = {z = (z1, . . . , zd−1) | zi ≥ 0,
d−1∑

i=1

zi ≤ 1} ,

which maps (z
(k)
1 , . . . , z

(k)
d−1) to (z

(k+2)
1 , . . . , z

(k+2)
d−1 ). Studying the properties of ψ2(·) is

equivalent to studying the properties of φ(·).
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Theorem 2
(i) Stability. All points in the interval IS defined by

IS =]
1

2
− s(λi∗),

1

2
+ s(λi∗)[ ,

where

s(λ) =

√
(λd − λ)2 + (λ1 − λ)2

2(λd − λ1)
,

and i∗ is such that |λi∗ − λ1+λd

2
| is minimum over all λi’s, i = 2, . . . , d− 1, are stable.

(ii) Instability. All points in the set IU defined by

IU = [0,
1

2
− s(λi∗)[ ∪ ]

1

2
+ s(λi∗), 1]

are unstable.

Proof.
(i) Stability. Take p ∈ IS and consider the fixed point z(p) = (p, 0, . . . , 0) for φ(·),

z(p) ∈ Sd−1. Assume that z
(k)
i ≤ β1, i = 2, . . . , d − 1 and |z(k)

1 − p| ≤ β1, that is
‖z(k) − z(p)‖∞ ≤ β1. Then

z
(k+2)
i = z

(k)
i f(λi, p)[1 + O(β1)] , β1 → 0 , (20)

where

f(λ, p) =
(µ∗1 − λ)2[(µ∗1)

3 − 2µ∗1µ
∗
2 + µ∗3 −D(p)λ]2

[D(p)]4

with

µ∗m = λm
1 p + λm

d (1− p) , m = 1, 2, 3 ,

D(p) = p(1− p)(λd − λ1)
2 . (21)

Then, p ∈ IS implies f(λi, p) < 1, i = 2, . . . , d− 1. Define f ∗(p) = maxi∈{2,...,d−1} f(λi, p)
and let K be any constant such that f ∗(p) < K < 1. Then, from (20):

∃β0 | ∀β < β0 , z
(k+2)
i ≤ Kz

(k)
i , ∀i = 2, . . . , d− 1 ,

and thus
∀β < β0 , z

(k+2m)
i ≤ Kmz

(k)
i , ∀i = 2, . . . , d− 1 , ∀m ≥ 1 . (22)

Now, (13) implies det[M3(πk)] ≤ Cβ1, with C some positive constant. Therefore,

|Dk+1 −Dk| ≤ Cβ1

D2
k

. (23)
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Similarly, ‖z(k+1) − z(1− p)‖ ≤ β2 implies

|Dk+2 −Dk+1| ≤ Cβ2

D2
k+1

≤ Cβ2

D2
k

. (24)

Since ‖z(k) − z(p)‖∞ ≤ β ⇒ ‖z(k+1) − z(1− p)‖∞ ≤ Hβ, with H some positive constant,
(23,24) imply

|Dk+1 −Dk| ≤ C ′β , |Dk+2 −Dk+1| ≤ C ′β

when ‖z(k) − z(p)‖∞ ≤ β, with C ′ = (C/D2
k) max{1, H}. This gives

|Dk+2 −Dk| ≤ 2C ′β .

Choosing β < β0, one then obtain from (22)

|Dk+2m+2 −Dk+2m| ≤ 2C ′Kmβ .

Therefore, ∀l > 0,

|Dk+2l −Dk| ≤ 2C ′β
1−K

= O(β) , β → 0 .

Moreover, ‖z(k)− z(p)‖∞ ≤ β ⇒ |Dk −D(p)| ≤ Aβ, with A a positive constant and D(p)
given by (21). Therefore, ∀l > 0,

|Dk+2l −D(p)| ≤
(

2C ′

1−K
+ A

)
β .

This, together with (22) implies

∀l > 0 , |z(k+2l)
1 − p| < Lβ , L > 1 . (25)

Finally, for any ε > 0, define α = min{ε/L, β0/L}, (22) and (25) then imply the stability
of the fixed point z(p).

(ii) Instability. The Jacobian matrix Jφ of φ(·) at points z(p) = (p, 0, . . . , 0) can be
computed analytically, and is given by:

(Jφ)ij =
∂φi(z)

∂zj |z=z(p)

=





1 if i = j = 1
(λj−λ1)(λd−λj)

2[2λd(1−p)+2λ1p−λ1−λj ]

p(1−p)2(λd−λ1)4
if j > 1 and i = 1

[λd(1−p)+λ1p−λj ]
2[λdp+λ1(1−p)−λj ]

2

p2(1−p)2(λd−λ1)4
if i = j

0 otherwise .

One can easilly check that for p ∈ IU , (Jφ)ii > 1 for at least one i in {2, . . . , d− 1}. Since
the (Jφ)ii’s are eigenvalues of Jφ, Theorem 15.16 in [?] indicates that z(p) is unstable.
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Note that ∀λ1, . . . , λd the stability interval IS contains the interval

]
1

2
− 1

2
√

2
,

1

2
+

1

2
√

2
[ ≈ ]0.14645, 0.85355[ .

When d = 3, numerical simulations show that for any initial density of x(1) in IRd as-
sociated with a density of z(1) on Sd−1 reasonably spread, the density of attractors z(p)
characterized by p can be approximated by the density

ϕ(p) = C log min{1, (Jφ)22} =

{
C log(Jφ)22 if p ∈ IA

0 otherwise ,

where C is a normalisation constant. Figure 3 shows the empirical density of attractors
(full line) together with ϕ(p) (dashed line) in the case λ1 = 1, λ2 = 4, λ3 = 10. The
support of this density coincides with the stability interval IS.

Possible location of Figure 3

When d > 3, the density of attractors depends on the initial density of x(1).

4 Rate of convergence

Define the convergence rate at iteration k by

rk =
f(x(k+1))

f(x(k))
, (26)

where f(x) is given by (5). Without any loss of generality, one can take f(x) =
∑d

i=1 λix
2
i .

Rewriting rk in terms of z(k) defined by (10), one gets

rk = 1− 1

µ1µ−1

,

where µm is defined by (12). Define the asymptotic rate as

R = R(x(1), x∗) = lim
k→∞




k∏

j=1

rj




1/k

. (27)

Generally, R depends on the initial point x(1) and the optimal point x∗. Theorem 1 implies
that for any fixed x∗ and almost all x(1) the asymptotic rate depends only on the attractor
(18) and is given by

R(p) =

(
f(x(k+2))

f(x(k))

)1/2

11



where x(k) corresponds to π1 or π2, see (18). This gives

R(p) =
p(1− p)(ρ− 1)2

[p + ρ(1− p)][(1− p) + ρp]
,

with ρ = λd/λ1 the condition number of the matrix A. The function R(p) is symmetric
with respect to 1/2 and monotonously increasing from 0 to 1/2. The worst asymptotic
rate is thus obtained at p = 1/2:

Rmax =

(
ρ− 1

ρ + 1

)2

,

see (4). Note that from Kantorovich inequality, see [?], p. 151, µ1µ−1 ≤ (1 + ρ)2/(4ρ),

and therefore ∀x(k), rk ≤ Rmax. The worst rate is thus achieved only when x
(k)
1 = ±ρx

(k)
d ,

x
(k)
2 = · · · = x

(k)
d−1 = 0.

Consider now another convergence rate, defined by

R′ = lim
k→∞




k∏

j=1

r′j




1/k

.

where

r′k =
‖x(k+1)‖2

‖x(k)‖2
.

Rewriting r′k in terms of z(k), one gets

r′k = 1− 2µ−1

µ1µ−2

+
1

µ2
1µ−2

.

One can easilly check that for almost all x(1) the asymptotic rate R′ is equal to R(p),
where p defines the attractor.

5 Steepest descent with relaxation

The introduction of a relaxation coefficient γ, with 0 < γ < 1, in the steepest-descent
algorithm totally changes its behaviour. The algorithm (7) then becomes

x(k+1) = x(k) − γ
(g(k))T g(k)

(g(k))T Ag(k)
g(k) .

For fixed A, depending on the value of γ, the renormalized process either attracts to
periodic orbits (the same for almost all starting points) or exhibits a chaotic behaviour.
Figures 4 (respectively 5) presents the classical period-doubling phenomenon in the case
d = 2 when λ1 = 1 and λ2 = 4 (respectively λ2 = 10). Figures 6 (respectively 7) give the
asymptotic rate (27) as a function of γ in the same situation.

12



Possible location of Figure 4

Possible location of Figure 5

Possible location of Figure 6

Possible location of Figure 7

We get now instead of (26):

rk(γ) = 1− γ(2− γ)

µ1µ−1

.

Note that from Kantorovich inequality the worst value of the rate is

1− γ(2− γ)
4ρ

(1 + ρ)2
> Rmax ,

if γ < 1. However, numerical results show that for γ large enough the asymptotic rate
is significantly better than Rmax. A detailed analysis of the 2-dimensional case gives the
following results.

(i) If 0 < γ ≤ 2
ρ+1

, the process attracts to the fixed point p = 1 and R = R(γ) = 1− 2ργ
ρ+1

.

(ii) If 2
ρ+1

< γ ≤ 4ρ
(ρ+1)2

, the process attracts to the fixed point p = 2ρ−γ(ρ+1)
2(ρ−1)

, and

R(γ) = Rmax.

(iii) If ≤ 4ρ
(ρ+1)2

< γ ≤ 2(
√

2+1)ρ
(ρ+1)2

, the process attracts to the 2-point cycle (p1, p2), with

p1,2 =
2ρ− γ(ρ + 1)±

√
γ(γρ2 − 4ρ + 2γρ + γ)

2(ρ− 1)
,

and R(γ) = 1− γ.

(iv) For larger values of γ one observes a classical period-doubling phenomenon, see
Figures 4 and 5.
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(v) If ρ > 3 + 2
√

2 ≈ 5.828427, the process attracts again to a 2-point cycle for values
of γ larger than γρ = 8ρ

(ρ+1)2
, see Figure 5. For the limiting case γ = γρ, the cycle is

given by (p′1, p
′
2), with

p′1,2 =
ρ

(
ρ2 − 2ρ + 5± 2

√
(ρ2 − 2ρ + 5)(5ρ2 − 2ρ + 1)

)

(ρ− 1)(ρ + 1)3
,

and the associated asymptotic rate is

R(γρ) =
ρ2 − 6ρ + 1

ρ2 − 1
.

In higher dimensions, repeated numerical trials show that the process typically no
longer attracts to the 2-dimensional plane spanned by (u1, ud). Figure 8 presents the
projection of the attractor of z(k) on the plane (z1, z3) in the case d = 3, λ1 = 1, λ2 = 2,
λ3 = 4 and γ = 0.97. Such a picture is typical for d > 2.

Possible location of Figure 8
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Figure captions

Figure 1. Projection of the region of attraction for v(k) to a small neighbourhood
(radius < 0.02) of the point v∗ = (0.9606, 0, 0.2781) onto the plane (v1, v3) (d = 3, λ1 =
1, λ2 = 2, λ3 = 4).

Figure 2. Starting points on the unit sphere colored a a function of the limiting value
of p in (18) (d = 3, λ1 = 1, λ2 = 2, λ3 = 4).

Figure 3. Empirical density of attractors (full line) and ϕ(p) (dashed line) (d =
3, λ1 = 1, λ2 = 4, λ3 = 10).

Figure 4. Attractors for z(1) as a function of γ (d = 2, λ1 = 1, λ2 = 4).

Figure 5. Attractors for z(1) as a function of γ (d = 2, λ1 = 1, λ2 = 10).

Figure 6. Asymptotic rate (27) as a function of γ (d = 2, λ1 = 1, λ2 = 4).

Figure 7. Asymptotic rate (27) as a function of γ (d = 2, λ1 = 1, λ2 = 10).

Figure 8. Projection of the attractor of z(k) on the plane (z1, z3) (d = 3, λ1 = 1, λ2 =
2, λ3 = 4, γ = 0.97).
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