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1. INTRODUCTION

The name dynamical search was introduced by the authore mémograph
Pronzatoet al (2000) following a series of papers on special aspects of the
area. Although this monograph is a reasonably compreherssisnmary of
the area, it was considered worthwhile giving a more lelguirgroduction
showing together something approaching a coherent defiriti the field and
giving some alternative constructions.

The starting point for the theory is a particular type of op$ation or search
algorithm which isset based That is to say, instead of a discrete set of points
{z;} in some set which converges to a solution we considered a collection
of sets{S; } typically containingz* (though not always) and such that the size
of S; (diameter, volume, etc.) converges to zero. Thus at iteratithe sets;,
or its boundary, provides some kind of approximantafor

The second half of the theory arises from creating a dyndreysdem from
this basic setup.

Let us proceed with a canonical example, which was very mhelstarting
point for the theory and holds some of its salient featurdss &ample belongs
tothe rich class of examples arising from minimisation ofilentremal function
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f(-) on some intervak using a ‘second-order’ line-search algorithm. The gen-
eral ‘'second-order’ line-search algorithm, in its renoliegal form, compares
function values at two points, first,,, from the previous iteration and second,
el,, selected by the algorithm at the current iteration. Kgt= [0,1]. Any
choice fore; € [0,1] and any function)(.) : [0,1] — [0, 1], withe], = ¢(ey,)
then defines a second-order algorithm. Define

u, = min{e,, e}, v, = max{e,, e},

then the deletion rule is:

{ (R): if fu(up) < fn(vy) delete(vy, 1]
(L) = if fulun) > fulv,) delete[0,u,,),

where f,,(.) is the renormalised function; (R) and (L) stand for right deit
deletion. The remaining interval is then renormalise{)id].

Tn+41

___________________________

___________________________

Figure 1.1 The Golden Section iteration.

TheGolden Section algorithroorresponds to

Vh—1
2

~ 0.61804

Unzl—un:¢:

i.e.toel, =1 —e,, withe; = ¢. In the special case whef{x) is symmetric
aroundz* the algorithm yields the time homogeneous dynamic pracgss =
h(z,), wherez; = z* and

) 21+ ) if x, <

) —{ oL+ ) —¢ if wy> (1.1

D[] =
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Figure 1.1 shows this transformation.

The invariant density(x) for this dynamical system can be easily computed
and is shown in Figure 1.2. Some other second-order linelsedgorithms
are presented in Section 6.
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Figure 1.2 The graph of the invariant density for the Golden Sectiootigm.

Let us now give a tighter, though not exhaustive, descmptbthe field.
Following the above discussion we divide the descriptioa d@fynamical search
problem into two halves.

2. SEARCH PROBLEM
A search problem can be characterized with the followingcis;
X : aspace in which the algorithm operates;

z* : a distinguished point inX, called the ‘solution.” We may sometimes
consider, rather, a distinguished $€t C X.

{Si}6°: A setof subsets ak'. Very often but not always these are nested so that
S; D81 (i=0,1,...)
F': aclass of functions oX;
f(-): afunction inF, usually with some connection . For example,
o = argmin,e x f(z) or o* = {u]f(z) = 0}

{z;} : aset of observation points (often approachiri
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y; . an observation. This may be simply

yi = f(m3)

but it may alternatively be an indicator function descripsome feature
of f(z;), or comparisons between a ‘window’ ¢fz;) values and so on.

Given this main notation we define an algorithm as an itezatdheme which
given the current datge;, y; }7_, computes the next approximating $&t, ;.
In reality this will be a construction, sometimes quite cdempwhich uses

all the current information
{{zi yitico {Sitizo
to producer, ; first and then an observation is made at the specified
giving
{Tn41,Yn+1, Snt1} -
Let us link this definition to the Golden Section algorithm.
X : [0,1];
x* : unigue minimizing point off (-)
{S;}: current uncertainty interval;
F': aclass of uniextremal functions on;
f(-): afunction inF;
{z;} : aset of observation points;
y; . indicator
0 otherwise.

we{ b G < e

The algorithm is clear: the new observation paint; is the new left or right
Golden Section point and the transitiSh— S;; is obtained by the deletion.

We now discuss the construction of the dynamical systemhiatstage we
describe the most basic version when $hare nested. There is only one basic
idea which is of renormalisation. We need two new objects.

Xp : A canonical region. This may be the same as the startingmesgyp
g; . arenormalisation taking the currefif to Xy:

9:(S;) = Xo
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The dynamical system is then derived automatically as

The system then has trajectory

Ty =T ... T,

—

and lives entirely inXj.

The subject of dynamical search consists of relating cgarare of the orig-
inal algorithm to properties of the dynamical system. Vewghly, the con-
struction of theS; links to the rate of expansion of the map

* *

In making the connection perhaps the most important olgedefine is the rate
of convergence. The set-based nature of the algorithmstids the extension
of the usual definition to a range of types of convergence lwhink, then, to
classical rates of expansion of Lyapunov type. We shalbthice, in particular,
rates based on Renyi entropy of certain partitions gerngitatehe dynamical
systems.

3. CONSISTENCY AND UPDATING

Some of the most natural aspects of the set-based algoréhiggsfrom the
geometry of updating, that is, the transitiSpn— S;;. Within this the concept
of consistencys key.

A consistent seKX; C X is defined as a set of all € X consistent with the
current data. Thus, I€tz;, y;}i, be the data in the algorithm up towith the
true{f(-),z*} and let{z;, y; };-, be the data which would have been produced
by an alternative paif f(-), #*}, f(-) € F. Then we can define

Xn = {2 (&3, %) = (wi,y5), i=0,1,...,n}

We see inthe Golden Section algorithm that the new regicaitodd is precisely
the set ofc* consistent with the assumption of unimodality and the curdata.

Consistency is often used in global optimization algorghbased on set
covering. Theideais asfollows. Assume tfiai satisfies a Lipschitz condition
of the type

V(z,2") € X x X, |f(z) — f(2")] < M|z —2'|.
Then, having evaluatefl(.) atz()) ..., =), with

F@E®) = min f(z™),

n=1,....k
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one knows that* does not belong to the uniasf_, B(z(™, p(™), where
B(z,e) ={z€ X : ||z —z|| <e}

foranyx € X ande > 0, and

The consistency set far* is thus

Sy = Uk_ Bz, ).

The pointsz(™ can be generated sequentially or not. A possible sequetial
proach (active covering) is to selec¢tt1) as the minimizer of the Lipschitzian
minorantf*)(.) of £(.),

fP(@) = max (f(@™) =Mz —2™]),

n=1,...,k

as shown in Figure 1.3.

f® ()

Figure 1.3 f(-) and the lower bounding functiof® (.).

However, this point:(**1) is difficult to determine when the dimension of
the spacel > 1, since the graph of ¥)(.) is obtained by intersecting cones in
the (d + 1)-dimensional space, see e.g. the survey paper Hansen andrdau
(1995). In nonsequential methods (passive covering) thessee{ (™)} does
not depend on the observed valuesf¢f) and can be generated beforehand.
Random or quasi—random (based on space—filling curveskeregs can be
used, see e.g. Boender and Romeijn (1995). Note that?)) need not be
evaluated when thg-th point in the sequence does not belong to the current
consistency set. One may refer to Zhigljavsky and Chekm#$696) for
a comparison between different covering schemes. In petiie Lipschitz
constant can be estimated in the course of optimisatione geeHansen and
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Jaumard (1995) or Zhigljavsky (1991). In this case, the isbeiscy sets are not
necessarily imbedded.
In many algorithms we simply set

S;i=X;>z".
In such cases we have
9i(X;) = Xo

so that we transform the consistent region to the canonégabn X,. This
means that the updating
T; = Tiy

is intimately related to the updating of the consistentargi

X; — Xi+1 .
Si7 x* Si+17 z*
9i gi+1
Xo, j Xo, g

Figure 1.4 Renormalisation.

Consider the following diagram (Figure 1.4). Assume thhtta g;'s are
invertible. Then

o* = g7 ' (a]) = g (2f)

and, if this holds for allz* in the original regionSy, then in X
ziy = gin gy (z)) .
This gives the basic updating for the system: writing= gi+1g;1 we have
i1 = hi(@})
Now suppose we require that the diagram is validgy then

Xo = gi(Si) = gi+1(Si+1)
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and R

Sit1 = gi419i(Si) = hi(S;), say.
This gives the updating formula for ti$, the core of the algorithm. If moreover
S; are the consistent sets then

Xi1 = g7519:(X0) .

The nicest cases are whelig = gng;l is time homogeneous that is not
dependent ir. In this case we write simply

h = giy19; (1.2)

Itis important to interpret the inversegs ! as acting locally. This is because
the g;'s used in any realization of the algorithms will be dependanz*. If
this is understood, we can give a simple proof of the time hgeneuity of that
h; andh; are equivalent under the condition thgtandg; ., commute. This
follows simply from the fact that in this cagg = h;l locally.

4. PARTITIONS AND RATES
4.1 PARTITIONS

For fixedz* the algorithm generates nested subsets which themsepesdie
on z*. Differentz* may yield the same sequence up to iteratiobut in the
limit different =* will normally generate different sequences.

At fixed iterationn let S,, = S,,(z*) be thenth approximant set given*.

Then
So = U Sp(z*).
T*ESy
If S, («*) is the consistent séf,,(z*) for z* (given the background conditions)
then
So= |J Xula). (1.3)
T*ESy
As z* ranges ovelS; we have disjoint sets corresponding tollwith some
X, (z*) and (1.3) represents a partitiong. In general the partition (1.3) into
the consistency sets always gives a disjoint partition fdredr not thesS,, (x*)
are disjoint.

More importantly, for the analysis we can work, rather, vift dynamical
system. Furthermore, the simple analysis given in ternv; of z; — x;41
with 21 = z* may be insufficient to make the dynamical system. We typjcall
extend the ‘state-space’ of the system with additionakstatiables say and
define the system as

{zi,ei} = {zit1,€i01}.
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Itis then possible to relate the simple partition in termsarisistent sets for the
original algorithm to the partition of the trajectories betdynamical system
in the formal sense. This allows definition of rates of expamsvhich can be

related to the rates of contraction of thg (or X,,) in the original algorithm.

4.2 ERGODIC CONVERGENCE RATE

These rates of contraction are measured in terms of sometyp&ime and
we have two competing measures(#]) and vo[X,,). In all the algorithms
devisedX,, C S,, and therefore vglX,,) < vol(S,).

DefineL,, = vol(S,,). Then the local rate is defined as

Ly,
Ty = rp(z¥) = L—:l
The asymptotic rate is then defined as
1 N—1 1
R= R’ = Jim [y = Jim (Lo T] rue)I¥

If this limit exists and is the same for almost afl with respect to the Lebesgue
measure, the® will be called theergodic convergence rateéSincelLy < oo
this becomes
N 1
R= lim ([] )7, (1.4)
=1

N—oo
ne—

and the logarithmic form (callelbg—rate is

1 X
0= —logR=— lim sz:llogrn.

N—0

An important question concerns the relation between therlige and the
Lyapunov exponents; of the corresponding dynamical system. The renormal-
isation is typicallyaffinewith respect tac*, that is the renormalised location of
z* in S, satisfies

In = gn(x*) = Q" + Wn

where the full-rank matrix2,, and the vectow, may depend on some other
state variable®,, of the dynamical system. The variablés do not depend
explicitely onz* since they are related to known characteristics of the titagec
function or to parameters of the search algorithm. Then yin@ihic process is
Zni1 = (Tn+41,0n41) = T'(zn, 0n), with, from (1.2),

-1 -1
T+l = Qn+IQn Lp — Qn+1ﬂn wpn + Wpt1,
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and#, 1 not depending explicitly om:,,. DefineX, = df, 1/df.. Then,
as shown in Pronzatet al (2000), Theorem 4.1, if the matricé&ﬂfl and
1‘[5?:1 ¥; have real eigenvalues for all and the Lyapunov exponents of the
dynamic systen?’(-) are well defined, then the log—ratds equal to the sum
of d Lyapunov exponents df(-), withd = dim z.

4.3 CHARACTERISTICS OF AVERAGE
PERFORMANCES

As already noticedl.,, = vol(S,,) depends on the value af. Adopting a
Bayesian point of view, we can assume thahas a prior distributiom(-) on
So, andg; (-) thus induces some distributigr(-) for z;.

Since the dynamical proce$s,,} may depend on some other characteris-
tics, i.e.z, = (zy,0,), with §,, corresponding to characteristics of the objective
function f(-) or to parameters of the algorithr#; is thus known. The expec-
tations considered below are then with respeat;tconditional ord;.

In the case of optimization of a locally symmetric functiding dynamical
process depends on the (non—parametric) function itsbk.objective function
can then be written as

f(z) = h(z — %),
with 2(0) = minh(-). When taking expectations, we then consitlér) as
fixed and perform expectation with respect:toonly.

We can define the following performance characteristics:

Elog L, = Ey{log L,(z)},
log ELy, = log E{Ly(z)},
and more generally
log EL;, = log E,{Ly(z)} fora>—1.

We shall also consider the asymptotic versions of theseacteistics:

1
Wi =— lim —FlogL,,

n—oo n,
Wy =— li L log EL
2 — = n;r{olo E 0g n
and more generally

1 1
=" lim = -1
W’Y 1_,yn1l>ngo,nlogELn ?7#177203
if the limits exist. From the authors’ point of view, the belwur of W, as
a function of~y reflects the most essential asymptotic features of thenaligi

algorithm.
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Note that Jensen’s inequality imply
log EL, > Elog L, , Vn>1,

and thus, > W, whenW; andW, exist. More generally, Blder inequality
guarantee$V, > W, for v < ' whenW.,, andW.,s exist.

In many casesV,, is just the entropy of the associated dynamical system
defined through the sequence of the Renyi entropies of ordgrthe cor-
responding partitions, see Pronzabal (2000) and (1997b). Examples of
optimisation algorithms where this characteristic is eat¢d analytically can
be found in Pronzatet al (1997a, 1998, 2000).

4.4 CHARACTERISTICS OF THE WORST-CASE
PERFORMANCE AND COUNTING
CHARACTERISTICS

Considering the worst—case performances with respect to Sy, one can
define
ML, = sup Ly(z"),
z*

and, provided that the limit exists,
1
Wy = — lim —logML, .
n—oo n,

The examples of the optimisation algorithms when this dttarsstic is evalu-
ated analytically, can be found in Pronzatal (1997a), Pronzatet al (1998),
Pronzatcet al (2000), and Wynn and Zhigljavsky (1993).

The uncertainty regiol,, obtained at iteratiom depends om:*. However,
certain values of* lead to the same regia$i,(z*). One can thus count the
number of different regions that can be obtained whére S,. Denote this
number byN,,. The asymptotic version of this characteristic is:

.1
00 = nll)nolo - log N, ,

provided the limit exists. For a wide class of line—searajoathms gy =
Wy, which coincides with the topological entropy of the dyneahisystem
associated with the algorithm.

S. DYNAMICAL SYSTEM REPRESENTATION
5.1 SETTING UP THE DYNAMICAL SYSTEM

As mentioned in Section 3. it is often the case that the sinitplation
h; : x; — x;4+1 1S not enough to obtain a first order time-invariant dynaiica
system. Other information needs to be carried forward.
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A simple rule for capturing the additional information iscarry forward
in addition toz;+; and.S; the additional restriction oyfi(-) obtained from the
requirement of consistency with the data. Recall that wekwath a class of
function F'. Define

Fo=A{f"€ F| (&, y;) = (@, p0), i=0,1,...,n},

where as before!, 4! is the data which would have been obtained ugihg
A useful approach is not to work with the clags but with the class induced
on X, by the functiong,,, namelyF;; defined by

Fy={/" € F| [*(gn(z)) = (), [ € Fu}.

This is, in terms of the dynamical system, a minimal repregém of £}, that
is a minimal set of ‘independent’ quantities allowing thelapng F;; — Fj;
on Xj. Thus, the state space of the dynamical system is some kimihahal
representation of the triple

{x:;? STMFT):}

sufficient for the reconstruction of this triple.
Then we have a clearer idea of a time homogeneous systemlyname

('x?*z—i-lv Sn-i-lvF:L(—i—l) = H(x:;,a Sh, F;)

for some functiond which does not depend en This approach is well known
in system theory under the name of state-space methods. e Tinesesses
which perhaps appear not to have a simple one-step timeendept shift are
converted to a state-space representation with a one+stegfdrmation. In
the stochastic case this typically gives a Markov chaingsgntation. In fact,
in the current case the Markovian representation sometippelses, where the
transition probabilities are represented by the invanaeasure of the process.

The benefits of the conversion of search and optimisatiooridtgns to dy-
namical systems arise from the access it gives to a machfoerhe com-
putation of rates not normally employed in optimisation.eThethods range
from purely analytic exact computation to cruder simulatiwethods with cer-
tain semi-analytic methods in between. In some cases weakaratstandard
algorithm, do the calculations of rate, try to speed up tigerdthm by some
relaxation method, recompute the rate and show some immeEve

In Sections 6,7, and 8 we outline three classes of exampliigdivate these
ideas. Note that some of the material of these sections cdauipel in the
monograph Pronzatet al (2000) and one can also find many other related
articles by the authors provided in the list of references oan find many
other examples in these references.
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5.2 GUARANTEEING THE SUPPORT BY INITIAL
EXPANSION

In both the optimal line-search methods and the adaptafithedine-search
to the ellipsoidal algorithm a judicious improvement camisede to guarantee
that the algorithms do not stop by loosing consistency, attior@d in the last
section. This is related to the support of the dynamicalesyst,, achieved by
renormalisation. The heuristic description of the methasl three steps.

First, one notes that some original algorithm has aprocess whose support
is smaller than the full standard region. Based on this elsien one seeks to
accelerate the algorithm with some optimistic version.ifglka deep cut in the
ellipsoidal algorithm is an example.

Second, one observes that over-optimism can lead to thaethlgaceases to
converge because the consistent region loo$ed his loss ofz* corresponds
to the support for the,, being larger than the standard region.

Third, if X is the support of théz,, } process, one can seek to extend the
initial region S; so thatX c S; andz; is automatically placed withitX. It
happens that this particular initialization procedure riowes the finite sample
performance of the algorithm, but also some asymptoticoperdnce charac-
teristics, see Sections 6.4 and 6.5.

6. SECOND-ORDER LINE SEARCH
6.1 GENERAL SCHEME AND RENORMALISATION

A practically tractable class of algorithms is line seargoathms. At each
iteration we assume that', the optimising point, lies in an intervali,,, B,].
At the next iteration a deletion

z* € [ATL+17-BTL+1] - [ATL?BTL]

ismade. Depending on the nature of the probldm B,,] may be a consistency
region calculated from the previous information about gedtve function, or
the starting interval, oftefo, 1].

The nature of the information is critical. For the intervalslbd algorithms
of the above kind rather than observirigz,,) directly we may observe the
indicator function of some event. For example, for finding #ero of some
monotonic functionf(z*) = 0 one may simply receive whethg(z,) < 0
or > 0. Another important class of algorithms are the so-callexbsd-order
line-search algorithms for minimising a uniextremal fuoet Let us describe
the problem in a formal way.

Let the objective functiorf (.) be given on an intervald, By] andz* be the
unknown point at whicty(.) is minimum; letf(.) be decreasing far < z*
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and non—decreasing far > z* (or non—increasing fot < z* and increasing
for x > x*).

A, Un Vi By
An+1 Ent1 Bn1
(R) } % |
Apit E,+1 Bpy
(L) } i |

Figure 1.5 One iteration in a second—order line search algorithm

At iterationn we compare the values ¢f.) at two pointsU,, andV,, in the
current uncertainty intervab,, = [A4,, B,,), with U,, < V,,. The points are
U, = min{E,, E] } andV,, = max{E,, E| }, whereE,, is the point carried
from the previous iteration anfl], is being selected at the current iteration.
Then, if f(U,) > f(V,) we delete the segme,,, U,,), otherwise we delete
[V, Brn). The remaining part of the interval defines the uncertaintgrial
[Ap+1, Br1) for the nextiteration. Eithel,, or V,, belongs tdA,,+1, Bp+1);
this point isE,, ;. Figure 1.5; illustrates this; in this figure, (R) and (L)rsia
respectively for Right and Left deletion.

A second-order line—search algorithm is therefore defiyed b

(i) the initial uncertainty intervalA;, B;) that containgAy, By),

(ii) the initial point Ey € [A4, By),

(iii) the selection rule fo],, |, n > 0.

An important aspect of these algorithms is that the choicdef B;) 2
[Ao, By), which corresponds to an expansion of the initial uncetyaiterval,
affects the initialization of the corresponding dynamistsyn and has strong
influence on some of the performance characteristics

After either left or right deletion, we renormalise each entainty interval
[Ay, By) 100, 1). Thus introduce the normalised variables U, V,,, E,, and
E] in[0,1) by

Ay, Un—A, Va—4,
xn—gn(x) I, , Unp I, y Up = I )
n n n
e:E"_ATl e/_E;L_ATl
n Ln 9 n Ln Y

whereL,, = B,, — A,, is the length of the intervd4,,, B,,]. Note that

u, = min(ey,, €),), v, = max(e,, e )
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and the deletion rule is

{ (R): if fulun) < fn(vn) deletefv,, 1) (1.5)
L) i fu(un) 2 fu(vn) delete[0, uy,) '

with f,,(.) the renormalised function dn, 1) defined by

fa(@) = flgn ' ()],

whereg, (-) maps the intervalA,,, B,] back to the base regioj®, 1]. The
remaining interval is then renormalised[tb1). Straightforward calculation
then shows that right and left deletions respectively give

L for (R)
Tl =4 Sy, (1.6)
+l { e for (L).

Moreover, from the definition of,, 1, we obtain
o for (R)
it = { it for (L), &1

Assume that the functiofy(.) is symmetric with respect tg*. (Some asymp-
totic results are also valid whef{-) is only locally symmetric with respect to
z*.) Then the decision concerning left or right deletion atat®nn only de-
pends on the position af* with respect tq E,, + E},)/2. In the renormalised
form we thus obtain .

(R) if z, < ©2ten

(L) ifa,><ta.

(1.8)

6.2 SYMMETRIC ALGORITHMS AND THE
GOLDEN SECTION

For generabymmetric algorithm#], = A, + B, — E,, which is equivalent
toe, =1 —e,. Inthat case, the length,, does not depend on the sequence of
(R) and (L) deletions and is thus independent of the objedtmctionf (-).

The most famous second—order line—search algorithms aré&itionacci
algorithm (defined only when the number of observations isdfixand the
Golden Section algorithm. They both are symmetric. The Gwol8ection
(GS) algorithm was considered in Introduction; it is defitgd

[A1,B1) =[Ay, By), E1= A1+ ¢Ly,

EI:{An+90Ln if En:An+(1_‘;0)Lna
" Ap + (1 - ‘p)Ln if E,=A,+ oLy,
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whereL, = B, — A, andy = (v/5 — 1)/2 ~ 0.61804. The key property of
the algorithm is

E —A
Tl T 1y Wi >0 (1.9)
Ln+1

whereld = {1 — ¢, ¢}. This algorithm is known to be asymptotically worst—
case optimal in the class of all uniextremal functions, sesddf (1957) and
Du and Hwang (2000), Theorem 13.2.2. The convergence rateration
satisfiesry = 1 andr,, = ¢ for all n > 1, so thatL,, = Loyp™'. For the GS
algorithmuv,, = 1 — u,, = ¢ and the updating rule (1.6) becomes (1.1).

Unlike GS, the convergence rate of a general symmetric ighgoris not
exponential. This follows from the following consideratt

1
0.95+
0.9
0.85r
0.8
0.75+
0.7
0.65-
0.6

0.55

0.5
0

I I G I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.6 Typical sequence of iteratés,,, r,) in a symmetric algorithm

For a general symmetric algorithm

B Un for (R)
€n+l = {Snun for (L) (1.10)

ande,, = 1 — e, for everyn. This last condition implies,, = 1 — v,,, which
gives both for the (R) and (L) cases

L1 if1/2<v, <2/3
Untl = 9 L jfo3 < 1
o <o, <

with {v,,} belonging to the intervall/2,1). Note also that for every > 1
the rate is-, = v,,. Figure 1.6 presents a plot of a typical sequence of iterates
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(xn, ) fOr a generic symmetric algorithm, with), the renormalised location
of z* andr,, the rate.

It is interesting to note that the simple transformatign= 1/v,, — 1 gives
the famous Farey map; that is;, } follows the evolutionz,, 1 = T'(z;,) with
the mappindl’(-) defined by

[ u/(l-w) fO<u<1/2
T()_{(l—u)/u if1/2<u<1.

The mapping is presented in Figure 1.7.

The dynamical system,,,; = T'(z,) has a nonexponential divergence of
the trajectories. Such a map is callgldnost expandingwhich relates to the
phenomenon calledhaos with intermittency The invariant density for the
dynamical system,, ,; = T'(z,) is easily computed and equals:) =consyz,

0 < z < 1, where const is any positive number. This density is nograele,
that is

/Olp(x)dx = 0.

1

0.9r

0.8r

0.7r

0.6

0.5-

0.4

0.3r

0.2r

0.1r

0

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.7 The Farey map

Note that any statement on the asymptotic behavioyrgf deriving from
the Farey map translates into the behaviour of the behaofduy, }, whichis the
same for almost all initial valueag . Thisimplies, for example, that for a generic
vy (an irrational number that is not a quadratic irrational ,andre generally,
badly approximable), the invariant density far, } is ¢(v) = 1/[v(1 —v)]. It
is also is not integrable. For these generic values,dhe asymptotic rate is
not exponential, that i® = 1 andp = 0.
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However, for some initial points; the rate is exponential. For quadratic
irrationals this rate can be easily computed. The best agfmgonvergence
rate is for the GS algorithm, that is, when= ¢, the Golden Section.

6.3 MIDPOINT ALGORITHM

Themidpoint algorithmwas introduced in Wynn and Zhigljavsky (1993). It
is defined bY[AI,Bl) = [Ao,Bo), E, = Ay + e Ly with ¢ any irrational
number in[0, 1), and

A, +B,

E; 5

, Vn>1.
In the renormalised version this is equivalent to simplyisgte;, = 5 for any
n.

The dynamical system is how two-dimensional:

(22, 2¢y,) if z, <cp,en < %
1 -
(x . ) _ (%a?ﬂ) |f xn<cnaenZ§
n+l, Entl) = 2z, — 1,2e, — 1) if zy, > cp, e > %
U . ’
(xl’iei”, fie:) if z, > cp,en <35
/ - - . .
wherec,, = &4 = 14 & 2 = * ande, is any irrational number iff), 1).

The first component in this dynamical systenxjs the renormalised value of
x*. The second componeat,; only depends functionally om, through the
test for left or right deletion. A typical sequence of ites{z,, e, } is shown
in Figure 1.8.

One can check that the mappifg(.,.) = 7(7(.,.)) is uniformly expand-
ing, which implies the existence of an invariant measurelaialy continuous
with respect to the Lebesgue measure. The Lyapunov expmofanthis dy-
namical system are

N
1
A = —&g&ﬁngyﬁ—g_O%%,
1 N
Ay = — lim — Y log(2r?) =2A; —log2 ~ 0. .
9 Jim NnZ::l og(2r;) 1 — log 0.3799

The numerical values were obtained by simulation as wellyasumerical
solution of the corresponding Frobenius-Perron equatlaragreement with
the result mentioned in Section 4.2, the largest LyapunpeesntA; coincides
with the log-ratep = — log R. The ergodic convergence rate of the midpoint
algorithm isR ~ 0.5848. This is better than the rai® = ¢ ~ 0.6180 of the
GS algorithm.
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Figure 1.8 Typical sequence of iteratds:,,, e, } for the midpoint algorithm

6.4 WINDOW ALGORITHM

For the so-calledvindow algorithm see Pronzatet al (1999) for details,

[Al,Bl) = [Ao—ELo,B0+ELO),
E1 = (A1+Bl)/2—wL1/2,

and
E =

n

E,+wL, if E,<3}(A,+ By)
E, —wL, otherwise,

wheree > 0 andw > 0 are tuning parameters. The ratiB), — E,|/Ly,
defining the window width, is thus fixed and equals
Renormalisation yields the following two-dimensional dymical system:

(Lo o — ) if 2, < e+ w/2
(Tnt1,€nt1) = (Lo—tn _W_) if z, > e, +w/2.

l—en 7' 1—en

(1.11)

Figure 1.9 presents a typical plot of the sequence of itefatg ¢, ).

The values ot andw could be chosen optimally for ead¥h (the number of
iterations) and each criterion of Section 4.3. The ergodiwvergence rat&
does not depend an Good tuning ofw for the ergodic criteriork givesw =
1/8. Thisvalue, however, is far from being optimal for smafor all the criteria
W.,, whatever the choice af Also, for a fixed value ofv, choosinge large
enough§ > ﬁ), i.e. expanding the initial intervally, By), guarantees that
z1 belongs to the support of the invariant measure{fgy}. This is of crucial
importance, since it permits to obtain finite sample chariics close to their
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Figure 1.9 Typical sequence of iteratds:,,, e,, } for the window algorithmw = 1/8.

asymptotic values. Also, numerical study demonstratesstiagting pointse;
outside the support of the invariant measureafpigive bad convergence rates
in the first iterations.

An exhaustive analysis for reasonable valued/afl0 < N < 30) has lead
to the choice: = 0.3772 andw = 0.15, which is close to the best possible for
most of the criteria of Section 4.3, both finite-sample andragotic ones, see
Pronzatcet al (1999) and (2000) for details.

6.5 GENERALISED GOLDEN SECTION

A natural generalization of the GS algorithm is provided by tise of the
so-calledsection-invariant numbersn this casd/ in the right hand side of
(1.9) can be chosen as any admissible finite set of poin(s, in. Section 8.3
in Pronzatoet al (2000) and Pronzatet al (1997a) contain full enumeration
of all admissible two— and three—point sétsthere are continuous families of
these sets when the number of different poin® is four or larger. Increasing
the number of points in the sktleads to a bigger flexibility and therefore to a
possible increase in efficiency of the corresponding allgori In view of the
fact that the renormalising transformation is linear, urtbe condition that the
objective function is symmetric around, the dynamical system describing
the algorithm can be represented as a piece-wise linearintapp [0,1].

Consider, for example, the algorithm (we call it GS4 aldor) defined by
[Al, Bl) = [AO —elyg, BO+6L0), €= (1 — a)/2 ~ 0.43008, £ = A1+ b4
andthe saf = {a,b,1—b,1—a}, whereb = 2a> —4a®+3a, anda ~ 0.19412
is the smallest positive root of the polynon@at —8¢3 +11¢> —7t+1. The GS4
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algorithm is the best with respect to many ergodic and fisaerple criteria
in the class of these algorithms wif1| < 4, see Pronzatet al (1998) and
Pronzatcet al (2000) for a detailed study.

The updating rule fotz,, e, ) is

,C) if e, = a andz,, < 4%

(e . 2
(=t a) if e, = a andz, > 4%,
(iU +1,€ +1) = (%76{) |f (en =bor en = C) andxn < %,
n+1,Cn (Incfb7a) if (en:borenzc) andxnz%j
(%, d) if e, =dandz, <1— _aga’ :
(2200 b) if e, = dandz, > 1 — &£

(1.12)
wherec = 1 — b anda’ = 2a — a®.

Due to the symmetry with respect1g2 of the elements it¥, the dynamical
system can be simplified and represented as a piece-wise firepping of the
interval [0,1]; it has the form shown in Figure 1.10. (In tfigure we also mark
the points defining the partition of the interval [0,1] allioyy to represent the
transformation as a Markov shift.)

1

0.9r

0.8r

0.71

0.6

0.5F

0.4r

0.31

0.21

0.1r

Figure 1.10 Graph of the mapping describing the dynamical system (1.12)

Figure 1.11 presents the valuesdf, for differenty for the GS and GS4
algorithms, and also for the GS4 algorithm with= 0. The expansion of
the search interval at the first iteration of the GS4 algariik clearly seen to
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improve the performance characteristic, for v > 1.53. It also indicates that
traditional characteristics lik&/; are not always able to distinguish between
algorithms exhibiting much different behaviours.

0.7

0.65

0.6 \

0.55F 1

0.5F \

0.451- \

0.4 \

0.351

0.3F

0.25F T - a

0.2
0

Figure 1.11 Evolution of W, as a function ofy for the GS4 (full line), GS4 witls = 0 (dashed
line) and GS (dash-dotted line) algorithms.

7. ELLIPSOID ALGORITHMS

Very interesting combinations of geometry and dynamicseain the ellip-
soidal algorithms for linear and convex programming. Wecdbe the basic
step in such algorithms.

Assume that (after a renormalisation to be described) wavkhatz* lies
in a standard unit sphere &’

§ = {af ||zl <1}.

A ‘central cut’ algorithm will make a cut through a diametpéne H, which

is a plane passing through the centreSofif H is the half space on one side
of this plane and{ — the complement, then the information provided abgut
is

x*GSﬂH"' or x*GSﬂH_

Supposer* € S H*. Then the minimal volume ellipsoid is constructed
containingS (N H*. The ellipsoid must certainly contain*, although it is
not the consistency regiofi() H*. A renormalisation step is carried out to
transformFE back to the standard sphefkand the cut step is repeated.

In this primitive form of the algorithm only the direction thfe cut needs to be
selected at eachiteration. The unitdirection here is défiyehe perpendicular
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Sy to H, into HT, at the origin. A generalised version is to take a so-called
‘deep cut’, not through the origin but & + oSy for somea > 0. This
represents some kind of accelerated algorithm and we gaireioonvergence
rate while not being penalized because

SN(H+aSy)t cSNH*

The choice of directioy; depends on the nature of the problem. A generic
case is that of an unconstrained convex programming whgris determined
at each iteration as the gradient (or subgradient) dineaifdhe renormalized
objective function. The renormalization of the functiorosld be stressed. As
the renormalization,, : E,, — S is done, one also needs to renormalizdo
fn+1 SO that

fn(@) = fri1(hn(2))

For the deep cut algorithm we find the minimal volume ellipsoontaining
SN(H+aSy)".
The ellipse is
E(Sy,e) ={z € R/ (z = )" (QQ") ' (= —z) < 1}
with the centrer of the ellipsoid given by

_ o
15zl

wherep = (1 + da)/(d + 1) and

Sy Sk
1552

Q=Vo|ls—(1-V1-1)

wheres = % andr = %, see Figure 1.12

Note that ifa is too large then the ellipsoid will not contain the originhéel
updating transformation

hn: E(Sg,a) = S

2 Q Yz —1).

The measure of the convergence rate is

. VOl(En+1(SHn+17a)) _ d/2_/
mn(e) = vol(E,(Sy,,a)) 7 T
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Su

Figure 1.12 A deep cut in the ellipsoid algorithm.

Sincea > 0 one can see the gain in the rate from taking a deep cut over a
central cut whemx = 0.
Note that

1 l—« 1
(ro(@)4 =1 - a2 (1 + - log 7 +a> +0 <ﬁ>
asd — oo.

In this simple form there are links between the ellipsoidgbathm and
line-search. To see this consider the case when (by goodnkEy5y is a
constant direction, say, taken equal to the first basis vector without any loss of
generality. Thenthe ellipsoii(s; , «) will cut the first axis of coordinates atthe
point+[1 — 2,/o(1 — 7)]. We thus can follow the behaviour of the algorithm
as for a line search algorithm on the interjal, 1]: at each iteration we delete
either(—1 + 2y/o(1 —7),1] or [-1,1 — 2y/o(1 — 7)) and renormalise the
remaining interval back tp-1, 1].

Suppose for example that we want this deletion to be preceelfor the

Golden Section, then we sgto(1 —7) = ¢ = @ This is achieved for
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a=ay=1—(d+1)¢/dand would lead to the asymptotic rate

() = \fi-af 05 = vBVsVE -5+ 0(5)

1
~ 0.9241763720 4+ O (E)

asd — oo. This is an improvement over the asymptotic rate for thereéntit
algorithm, which is

d/2
d? d—1 1 1
1/d _ L1 = e
(7 (0)) (d2_1> i =1-340(5). 4o

l

The remarkable aspect of this analysis is that numericalitations show
that this rate is achievable when the directiyn is changing provided that the
algorithm does not break down in the sense that the optimistaking deep
cuts does not loose* from the consistent region, altogether. To avoid this, in
accordance with Section 5.2, it is necessary to make a suffianitial scale
expansion.

8. STEEPEST DESCENT

Algorithms based on observations of the gradient of theaibje function
f(x) may also exhibit dynamical system behaviour under suitedsiermali-
sation. We return here to the study of the steepest desagrithin initiated
in Pronzatecet al (2000, 2001b).

8.1 ALGORITHM AND ITS RENORMALISATION

The basic algorithm takes the form
k1) — (k) _ aka(:v(k))

where .
_(9f 9of
Vf(z)= (83:17”'7 837(1)

is the gradient off and
) = arg ngnf(:c(k) — aVf(zh)

We can study the steepest descent algorithm in detail fayukdratic func-
tion )
f(@) = 5@ =2 Ale — o).
Numerical simulations show that the same convergence grepéhold for
convex differentiable functions locally quadratic arouhdir minimum point
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z*. Ithas been known for many years that the asymptotic coenesgrate of the
algorithm depends on the ratio= \;/A; (for instance, see Luenberger(1973),
p. 152), where\; and )\, are the minimal and maximal eigenvalues of the
matrix A, respectively. Thus for any®) € IR¢

—1\?2
G ) k) | 1.13
fat) < (P7) 7a®) (113
However, it is the worst-case rate, given by (1.13), not tttea rate, which
simply depends on\; and A\;. As we shall see the situation with the actual
convergence rate is much more complex.

For the quadratic function

g®) = Vi@®) = A@® - a7

and
(g(k>)Tg(k)
Uk TGN Ag(R)
(g")* Ag
and therefore the algorithm can be rewritten as
(KT 4(k)
k+1) _  (k (9 ) g k

Without loss of generality we can take = diag(A1, Ag, ..., Ag) wWith 0 <
A1 < ... < Ag. With this assumption, the iteration of the algorithm (1.&dh
be written as

d_(glk)y2
p D = ) _ %gﬂ(k))gg’“) for i=1,....d. (1.15)
Zj:lkj(gj )?

7 [
Multiplying both sides of-th equation of (1.15) by; we obtain

k

(k+1) _ (k) Z?:l(gj(' >)2 A (k)

I WA
Zj:l/\j(gj )

A convenient renormalisation is to set

(k)
k Y; . k k
o= s with g = (6)2.

The equations (1.16) then imply

2
A SR
yck+1>=(1_M i for i=1,....d,

for i=1,...,d. (1.16)

) d (k;) )
j=1 Ajyj
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and

2
s a2W -
PO (Zh 7 ) for i=1,....d. (L17)

7 2
E?:l (E?:l Ajz§k) - /\l) Zl(k)

Note thatzgk) >0for: =1,...,d and Z?le§k) = 1. Therefore, we

can considerzgm as a weight on the eigenvalug, so that (1.17) defines a

transformation on discrete probability measures supgate{ A, ..., A\q}.

8.2 CONVERGENCE TO A TWO-DIMENSIONAL
PLANE

The asymptotic behaviour of the sequer{eé’“} generated by (1.17) is
studied in Akaike (1959), Forsythe(1968) and Chapter 7 ofPatcet al(2000).
The main result is that, assumifig< A\; < Ao < -+ < Ag_1 < Ag, the
sequence converges to a two-dimensional plane, spannde l®igenvectors
u1, ug associated with; and\;. More precisely, the following result holds.

Theorem 1. Let the objective functioffi be f(z) = 3(z — z*)T A(z — z*)
with the eigenvalues afl satisfyingd < A\ < Ay < -+ < g1 < Age
LetV = spanfu;,uq) be the two-dimensional plane generated by the (distinct
orthonormal) eigenvectors,, ugy corresponding to\; and Ay, respectively.
Then for any starting vectae(!) for which

ul' (W —2%) £ 0 and ul (@M —z*) £0, (1.18)

the algorithm attracts to the plang in the following sense:

w2 -0, k— o0,
for any non-zero vectow € V+. Moreover, the sequende¥)} of renor-
malised variables defined 1§8.1) converges to a two-point cycle:

2k)

2 = pur+(1—p)ug, PACLER DN (1—p) ur+pug Whenk — oo, (1.19)

wherep is some number if0, 1) depending orx(!).

Note that the updating formula (1.17) is exactly the samdf@weight&zw

andz§k) corresponding to equal; = A;, and therefore these weights can be
summed. Hence the assumption thatalare different can easily be extended
to the case of ties among, ..., \; 1. In the case when at least one of the
eigenvalues\; or )\, is not simple, we still have convergence to a cycle (1.19),
wherewu; anduy are certain eigenvectors associated withand \;. These
eigenvectors are determined uniquely only in the case wihereigenvalues
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A1 and )\, are simple and (1.18) holds. Also, the result obviously gaires
to the case when (1.18) is not satisfied (at least one of tHargmapducts is
equal to zero). The algorithm then attracts to a two-dim@raiplanel’’ and
{z(k)} converges to a two-point cyclel’’ is defined by the eigenvectors,

uj associated with the smallest and largest eigenvalues bathﬁz(l) # 0,

u¥z(1) £ 0. For the sake of simplicity of notations, we shall assume(tha8)
is satisfied, and thereforg = uy, u; = ugq.

8.3 ASYMPTOTIC RATE

The property stated in Theorem 1 has important consequendbg asymp-
totic rate of convergence of the steepest descent algarittamely, the actual
rate is determined by the limiting value pfin (1.19). Under the assumption
thatz() — z* does not belong to the two-dimensional pldrgthe limiting
value ofp is not arbitrary; as proved in Pronzagbal (2000), it belongs to the
interval

1 1
I= §—S(>\i*), 5"‘8()\1*) 5
where y 5 5
Mg —A)2+ (A1 —A)
s(\) = : 1.20
(A) VSN (1.20)
andq* is such tha);- — 224824 | is minimum over all\;’s, i = 2,...,d — 1.

The smallest possible intervalis

I V2 1 V2
Iy = lz 1’3 + 1 ] ~ [0.14645,0.85355] .
The minimal length interval = I, for the limiting valuep does appear when
Aiw = 21424 for somei* € {2,...,d — 1}

Assuming that the initial point(*) is random and uniformly distributed on a
sphere with the centre*, the density of the limiting values gfis well-spread
over the intervall, see Figure 1.13.

The relation between the limiting valyein (1.19) and the asymptotic con-
vergence raté defined in (1.4) is simple. Indeed, Theorem 1 implies that for
any fixedz* and almost all:(*) the asymptotic rate depends only on the value
of p and is given byR(p) = [f(z#1+2))/f(x*))]}/2, wherez(¥) is associated
withpe; + (1 —p)eg or (1 — p) e; + pegy. This gives

B p(1—p)(p—1)?
Re) = ot oA —p) T il

with » = A;z/A1, the condition number of the matrit. The functionR(p)
is symmetric with respect tb/2 and monotonously increasing from 01¢2.




An introduction to dynamical search 29
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Figure 1.13 The density of the limiting values gfin (1.19);d = 3, A\1 = 1, A24, A\s = 10.

The worst asymptotic rate is thus obtainegh at 1/2:
2
Rmax = <: T i) )
see (1.13). Interms aft!), the worst rate is achieved only Whﬁﬁc) = img“)
andxék) == .T((iki)l = 0.

Although the limiting behaviour of the algorithm is simpits, behaviour en
route to the attractor is fairly complicated and presentaetél structure. Itis
very difficult, if not impossible, to relate the initial pain(!) and the limiting
valuep (and thus the asymptotic rate).

To give aflavour of the behaviour of the algorithm we cantédke 3, \; = 1,

A2 = 2, A3 = 4 and consider the region of attraction in the two-dimendiona
simplex occupied by, 29, z3 or a small region around a selected (allowable)
point. Figure 1.14 shows the projection onto the pléng z3) of a typical
region of attraction fofz(*) — z*)/||z¥) — z*||.

In Figure 1.15 we used the baricentric coordinateszige,, z3 and have
coloured points in black or white according to whether thigiit points lie in
a selected half of the intervél Since the rate is a function of the limit ‘cycle’
one sees immediately that

() The rate depends on the start;

(i) As we approach the vertices of the simplex givenpy= 1 for some

1=2,...,d— 1, the separation between black and white is arbitrary finés Th
shows that starts closer and closer to these points leagttability in the rate.
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Figure 1.14 Projection of the region of attraction to a small neighbaadhof a limiting point.

091

Figure 1.15 The region of attraction for a half of the intenl

It also holds that until a neighbourhood of the limit cyclegsiched there,
the {z(k)} sequence may at any stage stay close to a corner or switckdmetw
different corners. At each vertex the interchanging of tiagettories has a
self-similar nature. This kind of behaviour is not unusumethe family of the
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rational maps, which the transformation (1.17) belongbuibjt still came as a
surprise to find such complexity in a very classical algonith

In Figure 1.16, the grey level of starting points on the upitere depends on
the limiting value ofp in (1.19). Again, this figure illustrates the difficulty of
predicting the limiting attractor for the sequer{eé®) }, and thus the asymptotic
rate of convergence of the algorithm, as a function of theistapoint.

Figure 1.16 Starting points on the unit sphere colored as a functionefithiting rate

8.4 STEEPEST DESCENT WITH RELAXATION

The introduction of a relaxation coefficient with 0 < v < 1, in the
steepest-descent algorithm totally changes its behavide algorithm (1.14)
then becomes

(g(k))Tg(k)
Yot 4 9

(g T Ag(k)

For fixedA, depending on the value of the renormalized process either attracts
to periodic orbits (the same for almost all starting poimtsgxhibits a chaotic
behaviour. Figure 1.17 presents the classical periodioh@uphenomenon in
the casel = 2 when); = 1 and\s = 4. Figure 1.18 gives the asymptotic rate
(1.4) as a function of; in the same situation.

pEHD) = (k) _ k)
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Figure 1.17 Attractors forz; as a function ofy (d =2, A1 =1, A2 = 4)
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Figure 1.18 Asymptotic rate (1.4) as a function of(d = 2, A1 =1, A2 = 4)
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Numerical results show that forlarge enough (buy < 1) the asymptotic
rate is significantly better thaR,,,,x = (1 — TLH)?, the worst-case rate for the
steepest descent algorithm € 1). A detailed analysis of the 2-dimensional
case gives the following results.

M Fo<~y< r+1 , Wherer = A2/, the process attracts to the fixed point

2r
p=landR = R(y) =1- 7.

(i) If 25 < v < (rj‘;—r)rz the process attracts to the fixed pojnt=

%2(77(”)1) andR(y) = Ruax.

(iii) If rf"l s < v < ((‘T/ET)?’“, the process attracts to the 2-point cycle
(pl,pg) with

2r —y(r+1) £ /y(yr? —4r + 29r + )
2(r — 1) ’

P12 =

andR(y) =1 —+.

(iv) For larger values ofy one observes a classical period-doubling phe-
nomenon, see Figure 1.17.

(v) If r > 34+2v/2 ~ 5.828427, the process attracts again to a 2-point cycle
for values ofy larger thany, = G +1)2 , see Figure 1.17. For the limiting

casey = v,, the cycle is given byp/, p5), with

r(r?—2r 4+5£2/07 = 2r £ 5) (o2 —2r +1))
P2 = (r—1)(r+1)3 ’

and the associated asymptotic ratéigy,) = (r? — 6r +1)/(r*> — 1).

In higher dimensions, the process typically no longer ettrdo the 2-
dimensional plane spanned oy, u,) and exhibits a chaotic behaviour in
the d-dimensional space. For large values of the relaxationficaait v < 1
the asymptotic convergence rate is typically significabiyter thanR,,,, =
(1-— —)2 the worst-case rate for the steepest descent algorithm.
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