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Laboratoire I3S, CNRS/Université de Nice-Sophia Antipolis, France

pronzato@i3s.unice.fr

Henry P. Wynn
Dept. of Statistics, University of Warwick, UK

hpw@stats.warwick.ac.uk

Anatoly A. Zhigljavsky
School of Mathematics, Cardiff University, UK

ZhigljavskyAA@Cardiff.ac.uk

1. INTRODUCTION

The name dynamical search was introduced by the authors in the monograph
Pronzatoet al (2000) following a series of papers on special aspects of the
area. Although this monograph is a reasonably comprehensive summary of
the area, it was considered worthwhile giving a more leisurely introduction
showing together something approaching a coherent definition of the field and
giving some alternative constructions.

The starting point for the theory is a particular type of optimisation or search
algorithm which isset based. That is to say, instead of a discrete set of pointsfxig in some set which converges to a solutionx�, we considered a collection
of setsfSig typically containingx� (though not always) and such that the size
of Si (diameter, volume, etc.) converges to zero. Thus at iteration i, the setSi,
or its boundary, provides some kind of approximant forx�.

The second half of the theory arises from creating a dynamical system from
this basic setup.

Let us proceed with a canonical example, which was very much the starting
point for the theory and holds some of its salient features. This example belongs
to the rich class of examples arising from minimisation of a uniextremal function
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2f(�) on some intervalX using a ‘second-order’ line-search algorithm. The gen-
eral ‘second-order’ line-search algorithm, in its renormalised form, compares
function values at two points, first,en; from the previous iteration and second,e0n, selected by the algorithm at the current iteration. LetX0 = [0; 1℄. Any
choice fore1 2 [0; 1℄ and any function (:) : [0; 1℄ �! [0; 1℄, with e0n =  (en)
then defines a second-order algorithm. Defineun = minfen; e0ng; vn = maxfen; e0ng ;
then the deletion rule is:�

(R) : if fn(un) < fn(vn) delete(vn; 1℄
(L) : if fn(un) � fn(vn) delete[0; un) ;

wherefn(:) is the renormalised function; (R) and (L) stand for right andleft
deletion. The remaining interval is then renormalised to[0; 1℄.6
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Figure 1.1 The Golden Section iteration.

TheGolden Section algorithmcorresponds tovn = 1� un = � = p5� 12 ' 0:61804 ;
i.e. toe0n = 1 � en, with e1 = �. In the special case whenf(x) is symmetric
aroundx� the algorithm yields the time homogeneous dynamic processxn+1 =h(xn), wherex1 = x� andh(xn) = ( xn(1 + �) if xn < 12xn(1 + �)� � if xn � 12 : (1.1)
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Figure 1.1 shows this transformation.
The invariant densityp(x) for this dynamical system can be easily computed

and is shown in Figure 1.2. Some other second-order line search algorithms
are presented in Section 6.6
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Figure 1.2 The graph of the invariant density for the Golden Section algorithm.

Let us now give a tighter, though not exhaustive, description of the field.
Following the above discussion we divide the description ofa dynamical search
problem into two halves.

2. SEARCH PROBLEM

A search problem can be characterized with the following objects.X : a space in which the algorithm operates;x� : a distinguished point inX, called the ‘solution.’ We may sometimes
consider, rather, a distinguished setX� � X:fSig10 : A set of subsets ofX. Very often but not always these are nested so thatSi � Si+1 (i = 0; 1; : : :)F : a class of functions onX;f(�): a function inF , usually with some connection tox�. For example,x� = argminx2Xf(x) or x� = fxjf(x) = 0gfxig : a set of observation points (often approachingx�);



4yi : an observation. This may be simplyyi = f(xi)
but it may alternatively be an indicator function describing some feature
of f(xi), or comparisons between a ‘window’ off(xi) values and so on.

Given this main notation we define an algorithm as an iterative scheme which
given the current datafxi; yigni=0 computes the next approximating setSn+1.

In reality this will be a construction, sometimes quite complex, which uses
all the current informationffxi; yigni=0; fSigni=0g
to producexn+1 first and then an observation is made at the specifiedxn+1
giving fxn+1; yn+1; Sn+1g :

Let us link this definition to the Golden Section algorithm.X : [0; 1℄;x� : unique minimizing point off(�)fSig: current uncertainty interval;F : a class of uniextremal functions onX;f(�): a function inF ;fxig : a set of observation points;yi : indicator yi = � 1 if f(xi) � f(xi�1)0 otherwise:
The algorithm is clear: the new observation pointxi+1 is the new left or right

Golden Section point and the transitionSi ! Si+1 is obtained by the deletion.
We now discuss the construction of the dynamical system. At this stage we

describe the most basic version when theSi are nested. There is only one basic
idea which is of renormalisation. We need two new objects.X0 : A canonical region. This may be the same as the starting region S0;gi : a renormalisation taking the currentSi toX0:gi(Si) = X0
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The dynamical system is then derived automatically asx�i = gi(x�)
The system then has trajectoryx�0 ! x�1 ! : : :! x�n !
and lives entirely inX0.

The subject of dynamical search consists of relating convergence of the orig-
inal algorithm to properties of the dynamical system. Very roughly, the con-
struction of theSi links to the rate of expansion of the mapx�i ! x�i+1 :
In making the connection perhaps the most important object to define is the rate
of convergence. The set-based nature of the algorithms has led to the extension
of the usual definition to a range of types of convergence which link, then, to
classical rates of expansion of Lyapunov type. We shall introduce, in particular,
rates based on Renyi entropy of certain partitions generated by the dynamical
systems.

3. CONSISTENCY AND UPDATING

Some of the most natural aspects of the set-based algorithmsarise from the
geometry of updating, that is, the transitionSi ! Si+1. Within this the concept
of consistencyis key.

A consistent setXi � X is defined as a set of allx 2 X consistent with the
current data. Thus, letfxi; yigni=0 be the data in the algorithm up ton with the
trueff(�); x�g and letf~xi; ~yigni=0 be the data which would have been produced
by an alternative pairf ~f(�); ~x�g, ~f(�) 2 F . Then we can defineXn = f~x�j (~xi; ~yi) = (xi; yi); i = 0; 1; : : : ; ng
We see in the Golden Section algorithm that the new region obtained is precisely
the set ofx� consistent with the assumption of unimodality and the current data.

Consistency is often used in global optimization algorithms based on set
covering. The idea is as follows. Assume thatf(:)satisfies a Lipschitz condition
of the type 8(x; x0) 2 X �X ; jf(x)� f(x0)j �Mkx� x0k :
Then, having evaluatedf(:) atx(1); : : : ; x(k), withf(x̂(k)) = minn=1;:::;k f(x(n)) ;
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one knows thatx� does not belong to the union[kn=1B(x(n); �(n)), whereB(x; ") = fz 2 X : jjx� zjj � "g
for anyx 2 X and" > 0, and�(n) = [f(x(n))� f(x̂(k))℄=M :
The consistency set forx� is thusSk = [kn=1B(x(n); �(n)) :
The pointsx(n) can be generated sequentially or not. A possible sequentialap-
proach (active covering) is to selectx(k+1) as the minimizer of the Lipschitzian
minorantf (k)(:) of f(:),f (k)(x) = maxn=1;:::;k(f(x(n))�Mkx� x(n)k) ;
as shown in Figure 1.3.
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f(x)

f (k)(x)
Figure 1.3 f(�) and the lower bounding functionf (k)(�).

However, this pointx(k+1) is difficult to determine when the dimension of
the spaced > 1, since the graph off (k)(�) is obtained by intersecting cones in
the(d+ 1)-dimensional space, see e.g. the survey paper Hansen and Jaumard
(1995). In nonsequential methods (passive covering) the sequencefx(n)g does
not depend on the observed values off(:) and can be generated beforehand.
Random or quasi–random (based on space–filling curves) sequences can be
used, see e.g. Boender and Romeijn (1995). Note thatf(x(k)) need not be
evaluated when thek-th point in the sequence does not belong to the current
consistency set. One may refer to Zhigljavsky and Chekmasov(1996) for
a comparison between different covering schemes. In practice the Lipschitz
constant can be estimated in the course of optimisation, seee.g. Hansen and
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Jaumard (1995) or Zhigljavsky (1991). In this case, the consistency sets are not
necessarily imbedded.

In many algorithms we simply setSi = Xi 3 x� :
In such cases we have gi(Xi) = X0
so that we transform the consistent region to the canonical regionX0. This
means that the updating x�i ! x�i+1
is intimately related to the updating of the consistent regionXi ! Xi+1 :Si; x� Si+1; x�

X0; x�i X0; x�i+1? ? ? ?-
-gi gi+1hi

Figure 1.4 Renormalisation.

Consider the following diagram (Figure 1.4). Assume that all the gi’s are
invertible. Then x� = g�1i (x�i ) = g�1i+1(x�i+1)
and, if this holds for allx� in the original regionS0, then inX0x�i+1 = gi+1 g�1i (x�i ) :
This gives the basic updating for the system: writinghi = gi+1g�1i we havex�i+1 = hi(x�i )
Now suppose we require that the diagram is valid onX0, thenX0 = gi(Si) = gi+1(Si+1)
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and Si+1 = g�1i+1gi(Si) = ~hi(Si) ; say:
This gives the updating formula for theSi , the core of the algorithm. If moreoverSi are the consistent sets thenXi+1 = g�1i+1gi(Xi) :
The nicest cases are wherehi = gi+1g�1i is time homogeneous that is not
dependent ini. In this case we write simplyh = gi+1g�1i : (1.2)

It is important to interpret the inversesg�1i as acting locally. This is because
thegi’s used in any realization of the algorithms will be dependent on x�. If
this is understood, we can give a simple proof of the time homogeneuity of that~hi andhi are equivalent under the condition thatgi andgi+1 commute. This
follows simply from the fact that in this case~hi = h�1i locally.

4. PARTITIONS AND RATES

4.1 PARTITIONS

For fixedx� the algorithm generates nested subsets which themselves depend
on x�. Different x� may yield the same sequence up to iterationn but in the
limit different x� will normally generate different sequences.

At fixed iterationn let Sn = Sn(x�) be thenth approximant set givenx�.
Then S0 = [x�2S0 Sn(x�) :
If Sn(x�) is the consistent setXn(x�) for x� (given the background conditions)
then S0 = [x�2S0Xn(x�) : (1.3)

As x� ranges overS0 we have disjoint sets corresponding to allx� with someXn(x�) and (1.3) represents a partition ofS0. In general the partition (1.3) into
the consistency sets always gives a disjoint partition whether or not theSn(x�)
are disjoint.

More importantly, for the analysis we can work, rather, withthe dynamical
system. Furthermore, the simple analysis given in terms ofhi : xi ! xi+1
with x1 = x� may be insufficient to make the dynamical system. We typically
extend the ‘state-space’ of the system with additional state variables saye and
define the system as fxi; eig ! fxi+1; ei+1g :
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It is then possible to relate the simple partition in terms ofconsistent sets for the
original algorithm to the partition of the trajectories of the dynamical system
in the formal sense. This allows definition of rates of expansion which can be
related to the rates of contraction of theSn (orXn) in the original algorithm.

4.2 ERGODIC CONVERGENCE RATE

These rates of contraction are measured in terms of some typeof volume and
we have two competing measures vol(Sn) and vol(Xn). In all the algorithms
devisedXn � Sn and therefore vol(Xn) � vol(Sn):

DefineLn = vol(Sn). Then the local rate is defined asrn = rn(x�) = Ln+1Ln :
The asymptotic rate is then defined asR = R(x�) = limN!1[LN (x�)℄ 1N = limN!1[L0 N�1Yn=0 rn(x�)℄ 1N :
If this limit exists and is the same for almost allx� with respect to the Lebesgue
measure, thenR will be called theergodic convergence rate. SinceL0 < 1
this becomes R = limN!1( NYn=1 rn) 1N ; (1.4)

and the logarithmic form (calledlog–rate) is% = � logR = � limN!1 1N NXn=1 log rn :
An important question concerns the relation between the log–rate% and the
Lyapunov exponents�i of the corresponding dynamical system. The renormal-
isation is typicallyaffinewith respect tox�, that is the renormalised location ofx� in Sn satisfies xn = gn(x�) = 
nx� + !n ;
where the full–rank matrix
n and the vector!n may depend on some other
state variables�n of the dynamical system. The variables�n do not depend
explicitely onx� since they are related to known characteristics of the objective
function or to parameters of the search algorithm. Then the dynamic process iszn+1 = (xn+1; �n+1) = T (xn; �n), with, from (1.2),xn+1 = 
n+1
�1n xn � 
n+1
�1n !n + !n+1 ;



10

and�n+1 not depending explicitly onxn. Define�n = d�n+1=d�Tn . Then,
as shown in Pronzatoet al (2000), Theorem 4.1, if the matrices
k
�11 andQki=1 �i have real eigenvalues for allk and the Lyapunov exponents of the
dynamic systemT (�) are well defined, then the log–rate% is equal to the sum
of d Lyapunov exponents ofT (�), with d = dim x.

4.3 CHARACTERISTICS OF AVERAGE
PERFORMANCES

As already noticed,Ln = vol(Sn) depends on the value ofx�. Adopting a
Bayesian point of view, we can assume thatx� has a prior distribution�0(�) onS0, andg1(�) thus induces some distribution�(�) for x1.

Since the dynamical processfzng may depend on some other characteris-
tics, i.e.zn = (xn; �n), with �n corresponding to characteristics of the objective
functionf(�) or to parameters of the algorithm;�1 is thus known. The expec-
tations considered below are then with respect tox1 conditional on�1.

In the case of optimization of a locally symmetric function,the dynamical
process depends on the (non–parametric) function itself. The objective function
can then be written as f(x) = h(x� x�) ;
with h(0) = minh(�). When taking expectations, we then considerh(�) as
fixed and perform expectation with respect tox� only.

We can define the following performance characteristics:E logLn = ExflogLn(x)g ;logELn = logExfLn(x)g ;
and more generallylogEL�n = logExfL�n(x)g for � > �1 :
We shall also consider the asymptotic versions of these characteristics:W1 = � limn!1 1nE logLn ;W2 = � limn!1 1n logELn ;
and more generallyW
 = 11� 
 limn!1 1n logEL
�1n ; 
 6= 1 ; 
 � 0 ;
if the limits exist. From the authors’ point of view, the behaviour of W
 as
a function of
 reflects the most essential asymptotic features of the original
algorithm.
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Note that Jensen’s inequality implylogELn � E logLn ; 8n � 1 ;
and thusW1 �W2 whenW1 andW2 exist. More generally, H�older inequality
guaranteesW
 �W
0 for 
 < 
0 whenW
 andW
0 exist.

In many casesW
 is just the entropy of the associated dynamical system
defined through the sequence of the Renyi entropies of order
 of the cor-
responding partitions, see Pronzatoet al (2000) and (1997b). Examples of
optimisation algorithms where this characteristic is evaluated analytically can
be found in Pronzatoet al (1997a, 1998, 2000).

4.4 CHARACTERISTICS OF THE WORST–CASE
PERFORMANCE AND COUNTING
CHARACTERISTICS

Considering the worst–case performances with respect tox� 2 S0, one can
define MLn = supx� Ln(x�) ;
and, provided that the limit exists,W1 = � limn!1 1n logMLn :
The examples of the optimisation algorithms when this characteristic is evalu-
ated analytically, can be found in Pronzatoet al (1997a), Pronzatoet al (1998),
Pronzatoet al (2000), and Wynn and Zhigljavsky (1993).

The uncertainty regionSn obtained at iterationn depends onx�. However,
certain values ofx� lead to the same regionSn(x�). One can thus count the
number of different regions that can be obtained whenx� 2 S0. Denote this
number byNn. The asymptotic version of this characteristic is:%0 = limn!1 1n logNn ;
provided the limit exists. For a wide class of line–search algorithms%0 =W0, which coincides with the topological entropy of the dynamical system
associated with the algorithm.

5. DYNAMICAL SYSTEM REPRESENTATION

5.1 SETTING UP THE DYNAMICAL SYSTEM

As mentioned in Section 3. it is often the case that the simpleiterationhi : xi ! xi+1 is not enough to obtain a first order time-invariant dynamical
system. Other information needs to be carried forward.
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A simple rule for capturing the additional information is tocarry forward
in addition toxi+1 andSi the additional restriction onf(�) obtained from the
requirement of consistency with the data. Recall that we work with a class of
functionF . DefineFn = ff 0 2 F j (x0i; y0i) = (xi; yi); i = 0; 1; : : : ; ng;
where as beforex0i; y0i is the data which would have been obtained usingf 0.

A useful approach is not to work with the classFn but with the class induced
onX0 by the functiongn, namelyF �n defined byF �n = ff� 2 F j f�(gn(x)) = f(x); f 2 Fng :
This is, in terms of the dynamical system, a minimal representation ofF �n , that
is a minimal set of ‘independent’ quantities allowing the updatingF �n ! F �n+1
onX0. Thus, the state space of the dynamical system is some kind ofminimal
representation of the triple fx�n; Sn; F �ng
sufficient for the reconstruction of this triple.

Then we have a clearer idea of a time homogeneous system, namely(x�n+1; Sn+1; F �n+1) = H(x�n; Sn; F �n)
for some functionH which does not depend onn. This approach is well known
in system theory under the name of state-space methods. These processes
which perhaps appear not to have a simple one-step time independent shift are
converted to a state-space representation with a one-step transformation. In
the stochastic case this typically gives a Markov chain representation. In fact,
in the current case the Markovian representation sometimesapplies, where the
transition probabilities are represented by the invariantmeasure of the process.

The benefits of the conversion of search and optimisation algorithms to dy-
namical systems arise from the access it gives to a machineryfor the com-
putation of rates not normally employed in optimisation. The methods range
from purely analytic exact computation to cruder simulation methods with cer-
tain semi-analytic methods in between. In some cases we can take a standard
algorithm, do the calculations of rate, try to speed up the algorithm by some
relaxation method, recompute the rate and show some improvement.

In Sections 6,7, and 8 we outline three classes of examples toillustrate these
ideas. Note that some of the material of these sections can befound in the
monograph Pronzatoet al (2000) and one can also find many other related
articles by the authors provided in the list of references; one can find many
other examples in these references.
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5.2 GUARANTEEING THE SUPPORT BY INITIAL
EXPANSION

In both the optimal line-search methods and the adaptation of the line-search
to the ellipsoidal algorithm a judicious improvement can bemade to guarantee
that the algorithms do not stop by loosing consistency, as mentioned in the last
section. This is related to the support of the dynamical systemxn achieved by
renormalisation. The heuristic description of the method has three steps.

First, one notes that some original algorithm has anxn process whose support
is smaller than the full standard region. Based on this observation one seeks to
accelerate the algorithm with some optimistic version. Taking a deep cut in the
ellipsoidal algorithm is an example.

Second, one observes that over-optimism can lead to the algorithm ceases to
converge because the consistent region loosesx�. This loss ofx� corresponds
to the support for thexn being larger than the standard region.

Third, if ~X is the support of thefxng process, one can seek to extend the
initial regionS1 so thatX � S1 andx1 is automatically placed within~X . It
happens that this particular initialization procedure improves the finite sample
performance of the algorithm, but also some asymptotic performance charac-
teristics, see Sections 6.4 and 6.5.

6. SECOND-ORDER LINE SEARCH

6.1 GENERAL SCHEME AND RENORMALISATION

A practically tractable class of algorithms is line search algorithms. At each
iteration we assume thatx�, the optimising point, lies in an interval[An; Bn℄.
At the next iteration a deletionx� 2 [An+1; Bn+1℄ � [An; Bn℄
is made. Depending on the nature of the problem[An; Bn℄may be a consistency
region calculated from the previous information about an objective function, or
the starting interval, often[0; 1℄.

The nature of the information is critical. For the interval based algorithms
of the above kind rather than observingf(xn) directly we may observe the
indicator function of some event. For example, for finding the zero of some
monotonic functionf(x�) = 0 one may simply receive whetherf(xn) � 0
or> 0. Another important class of algorithms are the so-called second-order
line-search algorithms for minimising a uniextremal function. Let us describe
the problem in a formal way.

Let the objective functionf(:) be given on an interval[A0; B0℄ andx� be the
unknown point at whichf(:) is minimum; letf(:) be decreasing forx � x�
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and non–decreasing forx > x� (or non–increasing forx � x� and increasing
for x > x�). An BnUnAn+1 En+1An+1 Bn+1(R)

(L)

Bn+1En+1Vn
Figure 1.5 One iteration in a second–order line search algorithm

At iterationn we compare the values off(:) at two pointsUn andVn in the
current uncertainty intervalSn = [An; Bn), with Un < Vn. The points areUn = minfEn; E0ng andVn = maxfEn; E0ng, whereEn is the point carried
from the previous iteration andE0n is being selected at the current iteration.
Then, iff(Un) � f(Vn) we delete the segment[An; Un), otherwise we delete[Vn; Bn). The remaining part of the interval defines the uncertainty interval[An+1; Bn+1) for the next iteration. EitherUn orVn belongs to[An+1; Bn+1);
this point isEn+1. Figure 1.5; illustrates this; in this figure, (R) and (L) stand
respectively for Right and Left deletion.

A second–order line–search algorithm is therefore defined by:
(i) the initial uncertainty interval[A1; B1) that contains[A0; B0),
(ii) the initial pointE1 2 [A1; B1),
(iii) the selection rule forE0n+1, n � 0.
An important aspect of these algorithms is that the choice of[A1; B1) �[A0; B0), which corresponds to an expansion of the initial uncertainty interval,

affects the initialization of the corresponding dynamic system and has strong
influence on some of the performance characteristicsW
 .

After either left or right deletion, we renormalise each uncertainty interval[An; Bn) to [0; 1). Thus introduce the normalised variablesx�,Un, Vn,En andE0n in [0; 1) byxn = gn(x�) = x� �AnLn ; un = Un �AnLn ; vn = Vn �AnLn ;en=En �AnLn ; e0n = E0n �AnLn ;
whereLn = Bn �An is the length of the interval[An; Bn℄. Note thatun = min(en; e0n) ; vn = max(en; e0n)
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and the deletion rule is�
(R) : if fn(un) < fn(vn) delete[vn; 1)
(L) : if fn(un) � fn(vn) delete[0; un) (1.5)

with fn(:) the renormalised function on[0; 1) defined byfn(x) = f [g�1n (x)℄ ;
wheregn(�) maps the interval[An; Bn℄ back to the base region[0; 1℄. The
remaining interval is then renormalised to[0; 1). Straightforward calculation
then shows that right and left deletions respectively givexn+1 = ( xnvn for (R)xn�un1�un for (L).

(1.6)

Moreover, from the definition ofEn+1, we obtainen+1 = ( unvn for (R)vn�un1�un for (L).
(1.7)

Assume that the functionf(:) is symmetric with respect tox� . (Some asymp-
totic results are also valid whenf(�) is only locally symmetric with respect tox�.) Then the decision concerning left or right deletion at iterationn only de-
pends on the position ofx� with respect to(En +E0n)=2. In the renormalised
form we thus obtain ( (R) if xn < en+e0n2(L) if xn � en+e0n2 : (1.8)

6.2 SYMMETRIC ALGORITHMS AND THE
GOLDEN SECTION

For generalsymmetric algorithmsE0n = An+Bn�En which is equivalent
to e0n = 1� en. In that case, the lengthLn does not depend on the sequence of
(R) and (L) deletions and is thus independent of the objective functionf(�).

The most famous second–order line–search algorithms are the Fibonacci
algorithm (defined only when the number of observations is fixed) and the
Golden Section algorithm. They both are symmetric. The Golden Section
(GS) algorithm was considered in Introduction; it is definedby[A1; B1) = [A0; B0) ; E1 = A1 + 'L1 ;E0n = � An + 'Ln if En = An + (1� ')Ln ;An + (1� ')Ln if En = An + 'Ln ;
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whereLn = Bn � An and' = (p5 � 1)=2 ' 0:61804: The key property of
the algorithm is En+1 �An+1Ln+1 2 U 8n � 0 (1.9)

whereU = f1 � ';'g. This algorithm is known to be asymptotically worst–
case optimal in the class of all uniextremal functions, see Kiefer (1957) and
Du and Hwang (2000), Theorem 13.2.2. The convergence rate atiterationn
satisfiesr0 = 1 andrn = ' for all n � 1, so thatLn = L0'n�1. For the GS
algorithmvn = 1� un = ' and the updating rule (1.6) becomes (1.1).

Unlike GS, the convergence rate of a general symmetric algorithm is not
exponential. This follows from the following considerations.
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Figure 1.6 Typical sequence of iterates(xn; rn) in a symmetric algorithm

For a general symmetric algorithmen+1 = ( unvn for (R)vn�un1�un for (L) (1.10)

ande0n = 1� en for everyn. This last condition impliesun = 1� vn, which
gives both for the (R) and (L) casesvn+1 = ( 1vn � 1 if 1=2 � vn < 2=32� 1vn if 2=3 � vn < 1
with fvng belonging to the interval[1=2; 1). Note also that for everyn � 1
the rate isrn = vn. Figure 1.6 presents a plot of a typical sequence of iterates



An introduction to dynamical search 17(xn; rn) for a generic symmetric algorithm, withxn the renormalised location
of x� andrn the rate.

It is interesting to note that the simple transformationzn = 1=vn � 1 gives
the famous Farey map; that is,fzng follows the evolutionzn+1 = T (zn) with
the mappingT (�) defined byT (u) = � u=(1� u) if 0 < u < 1=2(1� u)=u if 1=2 � u < 1 :
The mapping is presented in Figure 1.7.

The dynamical systemzn+1 = T (zn) has a nonexponential divergence of
the trajectories. Such a map is calledalmost expanding, which relates to the
phenomenon calledchaos with intermittency. The invariant density for the
dynamical systemzn+1 = T (zn) is easily computed and equalsp(x) =const=x,0 < x < 1, where const is any positive number. This density is not integrable,
that is Z 10 p(x)dx =1:
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Figure 1.7 The Farey map

Note that any statement on the asymptotic behaviour offzng deriving from
the Fareymap translates into the behaviour of the behaviourof fvng, which is the
same for almost all initial valuesv1 . This implies, for example, that for a genericv1 (an irrational number that is not a quadratic irrational and, more generally,
badly approximable), the invariant density forfvng is �(v) = 1=[v(1 � v)℄. It
is also is not integrable. For these generic values ofv1 the asymptotic rate is
not exponential, that isR = 1 and� = 0.
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However, for some initial pointsv1 the rate is exponential. For quadratic
irrationals this rate can be easily computed. The best asymptotic convergence
rate is for the GS algorithm, that is, whenv1 = ', the Golden Section.

6.3 MIDPOINT ALGORITHM

Themidpoint algorithmwas introduced in Wynn and Zhigljavsky (1993). It
is defined by[A1; B1) = [A0; B0), E1 = A1 + e1L1 with e1 any irrational
number in[0; 1), and E0n = An +Bn2 ; 8n � 1 :
In the renormalised version this is equivalent to simply setting e0n = 12 for anyn.

The dynamical system is now two-dimensional:(xn+1; en+1) = 8>>>><>>>>: (2xn; 2en) if xn < 
n; en < 12( xn2en ; 12en ) if xn < 
n; en � 12(2xn � 1; 2en � 1) if xn � 
n; en � 12(xn�en1�en ; 12�en1�en ) if xn � 
n; en < 12
where
n = en+e0n2 = 14 + en2 , x1 = x� ande1 is any irrational number in[0; 1).
The first component in this dynamical system isxn, the renormalised value ofx�. The second componenten+1 only depends functionally onxn through the
test for left or right deletion. A typical sequence of iteratesfxn; eng is shown
in Figure 1.8.

One can check that the mappingT 2(:; :) = T (T (:; :)) is uniformly expand-
ing, which implies the existence of an invariant measure absolutely continuous
with respect to the Lebesgue measure. The Lyapunov exponents for this dy-
namical system are�1 = � limN!1 1N NXn=1 log rn = % ' 0:5365 ;�2 = � limN!1 1N NXn=1 log(2r2n) = 2�1 � log 2 ' 0:3799 :
The numerical values were obtained by simulation as well as by numerical
solution of the corresponding Frobenius-Perron equation.In agreement with
the result mentioned in Section 4.2, the largest Lyapunov exponent�1 coincides
with the log-rate% = � logR. The ergodic convergence rate of the midpoint
algorithm isR ' 0:5848. This is better than the rateR = ' ' 0:6180 of the
GS algorithm.
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Figure 1.8 Typical sequence of iteratesfxn; eng for the midpoint algorithm

6.4 WINDOW ALGORITHM

For the so-calledwindow algorithm, see Pronzatoet al (1999) for details,[A1; B1) = [A0 � �L0; B0 + �L0) ;E1 = (A1 +B1)=2� wL1=2 ;
and E0n = � En + wLn if En < 12(An +Bn)En � wLn otherwise,

where� � 0 andw > 0 are tuning parameters. The ratiojE0n �Enj=Ln,
defining the window width, is thus fixed and equalsw.

Renormalisation yields the following two-dimensional dynamical system:(xn+1; en+1) = ( ( xnen+w ; enen+w � w) if xn < en + w=2(xn�en1�en ; w1�en ) if xn � en + w=2 : (1.11)

Figure 1.9 presents a typical plot of the sequence of iterates (xn; en).
The values of� andw could be chosen optimally for eachN (the number of

iterations) and each criterion of Section 4.3. The ergodic convergence rateR
does not depend on�. Good tuning ofw for the ergodic criterionR givesw =1=8. This value, however, is far from being optimal for smalln for all the criteriaW
 , whatever the choice of�. Also, for a fixed value ofw, choosing� large
enough (� � 1�w2(1+w) ), i.e. expanding the initial interval[A0 ; B0), guarantees thatx1 belongs to the support of the invariant measure forfxng. This is of crucial
importance, since it permits to obtain finite sample characteristics close to their
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Figure 1.9 Typical sequence of iteratesfxn; eng for the window algorithm,w = 1=8.

asymptotic values. Also, numerical study demonstrates that starting pointsx1
outside the support of the invariant measure forxn give bad convergence rates
in the first iterations.

An exhaustive analysis for reasonable values ofN (10 � N � 30) has lead
to the choice� = 0:3772 andw = 0:15, which is close to the best possible for
most of the criteria of Section 4.3, both finite-sample and asymptotic ones, see
Pronzatoet al (1999) and (2000) for details.

6.5 GENERALISED GOLDEN SECTION

A natural generalization of the GS algorithm is provided by the use of the
so-calledsection-invariant numbers; in this caseU in the right hand side of
(1.9) can be chosen as any admissible finite set of points in(0; 1). Section 8.3
in Pronzatoet al (2000) and Pronzatoet al (1997a) contain full enumeration
of all admissible two– and three–point setsU ; there are continuous families of
these sets when the number of different points inU is four or larger. Increasing
the number of points in the setU leads to a bigger flexibility and therefore to a
possible increase in efficiency of the corresponding algorithm. In view of the
fact that the renormalising transformation is linear, under the condition that the
objective function is symmetric aroundx�, the dynamical system describing
the algorithm can be represented as a piece-wise linear mapping on [0,1].

Consider, for example, the algorithm (we call it GS4 algorithm) defined by[A1; B1) = [A0� �L0; B0+ �L0); � = (1�a)=2 ' 0:43008, E1 = A1+ bL1
and the setU = fa; b; 1�b; 1�ag, whereb = 2a3�4a2+3a, anda ' 0:19412
is the smallest positive root of the polynomial2t4�8t3+11t2�7t+1. The GS4
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algorithm is the best with respect to many ergodic and finite–sample criteria
in the class of these algorithms withjUj � 4, see Pronzatoet al (1998) and
Pronzatoet al (2000) for a detailed study.

The updating rule for(xn; en) is(xn+1; en+1) = 8>>>>>>>><>>>>>>>>:
(xna0 ; 
) if en = a andxn < a+a02 ;(xn�a1�a ; a) if en = a andxn � a+a02 ;(xn
 ; d) if (en = b or en = 
) andxn < b+
2 ;(xn�b
 ; a) if (en = b or en = 
) andxn � b+
2 ;(xnd ; d) if en = d andxn < 1� a+a02 ;(xn�(1�a0)a0 ; b) if en = d andxn � 1� a+a02 ;

(1.12)
where
 = 1� b anda0 = 2a� a2.

Due to the symmetry with respect to1=2 of the elements inU , the dynamical
system can be simplified and represented as a piece-wise linear mapping of the
interval [0,1]; it has the form shown in Figure 1.10. (In thisfigure we also mark
the points defining the partition of the interval [0,1] allowing to represent the
transformation as a Markov shift.)
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Figure 1.10 Graph of the mapping describing the dynamical system (1.12).

Figure 1.11 presents the values ofW
 for different 
 for the GS and GS4
algorithms, and also for the GS4 algorithm with� = 0. The expansion of
the search interval at the first iteration of the GS4 algorithm is clearly seen to
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improve the performance characteristicW
 for 
 > 1:53. It also indicates that
traditional characteristics likeW1 are not always able to distinguish between
algorithms exhibiting much different behaviours.
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Figure 1.11 Evolution ofW
 as a function of
 for the GS4 (full line), GS4 with� = 0 (dashed
line) and GS (dash-dotted line) algorithms.

7. ELLIPSOID ALGORITHMS

Very interesting combinations of geometry and dynamics arise in the ellip-
soidal algorithms for linear and convex programming. We describe the basic
step in such algorithms.

Assume that (after a renormalisation to be described) we know thatx� lies
in a standard unit sphere inRdS = fxj jjxjj � 1g :
A ‘central cut’ algorithm will make a cut through a diametralplaneH, which
is a plane passing through the centre ofS. If H+ is the half space on one side
of this plane andH� the complement, then the information provided aboutx�
is x� 2 S\H+ or x� 2 S\H�
Supposex� 2 STH+: Then the minimal volume ellipsoidE is constructed
containingSTH+. The ellipsoid must certainly containx�, although it is
not the consistency regionSTH+. A renormalisation step is carried out to
transformE back to the standard sphereE and the cut step is repeated.

In this primitive form of the algorithm only the direction ofthe cut needs to be
selected at each iteration. The unit direction here is defined by the perpendicular
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‘deep cut’, not through the origin but atH + �SH for some� � 0. This
represents some kind of accelerated algorithm and we gain inthe convergence
rate while not being penalized becauseS \ (H + �SH)+ � S \H+

The choice of directionSH depends on the nature of the problem. A generic
case is that of an unconstrained convex programming whereSH is determined
at each iteration as the gradient (or subgradient) direction of the renormalized
objective function. The renormalization of the function should be stressed. As
the renormalizationhn : En ! S is done, one also needs to renormalizefn tofn+1 so that fn(x) = fn+1(hn(x))
For the deep cut algorithm we find the minimal volume ellipsoid containingS \ (H + �SH)+ :

The ellipse isE(SH ; �) = fz 2 Rd = (z � x)T (QQT )�1(z � x) � 1g
with the centrex of the ellipsoid given byx = �� SHkSHk
where� = (1 + d�)=(d + 1) andQ = p� "Id � (1�p1� �)SHSTHkSHk2 #
where� = d2(1��2)d2�1 and� = 2(1+d�)(d+1)(�+1) , see Figure 1.12

Note that if� is too large then the ellipsoid will not contain the origin. The
updating transformation hn : E(SH ; �)! S
is z 7! Q�1(z � x) :

The measure of the convergence rate isrn(�) = vol(En+1(SHn+1 ; �))vol(En(SHn ; �)) = �d=2p1� �
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Figure 1.12 A deep cut in the ellipsoid algorithm.

Since� > 0 one can see the gain in the rate from taking a deep cut over a
central cut when� = 0.

Note that(rn(�))1=d = p1� �20�1 + 1d logs1� �1 + �1A+O� 1d2�
asd!1.

In this simple form there are links between the ellipsoidal algorithm and
line-search. To see this consider the case when (by good fortune)SH is a
constant direction, says, taken equal to the first basis vector without any loss of
generality. Then the ellipsoidE(s1 ; �)will cut the first axis of coordinates at the
point�[1� 2p�(1� �)℄. We thus can follow the behaviour of the algorithm
as for a line search algorithm on the interval[�1; 1℄: at each iteration we delete
either (�1 + 2p�(1 � �); 1℄ or [�1; 1 � 2p�(1� �)) and renormalise the
remaining interval back to[�1; 1℄.

Suppose for example that we want this deletion to be precisely as for the
Golden Section, then we set

p�(1 � �) = � = p5�12 . This is achieved for



An introduction to dynamical search 25� = �0 = 1� (d+ 1)�=d and would lead to the asymptotic rate(rn(�))1=d = q1� �20 +O(1d ) = 12p2q3p5� 5 +O�1d�' 0:9241763720 +O�1d�
asd!1. This is an improvement over the asymptotic rate for the central cut
algorithm, which is(rn(0))1=d =  d2d2 � 1!d=2sd� 1d+ 1 = 1� 12d +O� 1d2� ; d!1:

The remarkable aspect of this analysis is that numerical calculations show
that this rate is achievable when the directionSH is changing provided that the
algorithm does not break down in the sense that the optimism of taking deep
cuts does not loosex� from the consistent region, altogether. To avoid this, in
accordance with Section 5.2, it is necessary to make a sufficient initial scale
expansion.

8. STEEPEST DESCENT

Algorithms based on observations of the gradient of the objective functionf(x) may also exhibit dynamical system behaviour under suitablerenormali-
sation. We return here to the study of the steepest descent algorithm initiated
in Pronzatoet al (2000, 2001b).

8.1 ALGORITHM AND ITS RENORMALISATION

The basic algorithm takes the formx(k+1) = x(k) � �krf(x(k))
where rf(x) = � �f�x1 ; : : : ; �f�xd�T
is the gradient off and�k = argmin� f(x(k) � �rf(x(k))

We can study the steepest descent algorithm in detail for thequadratic func-
tion f(x) = 12(x� x�)TA(x� x�) :
Numerical simulations show that the same convergence properties hold for
convex differentiable functions locally quadratic aroundtheir minimum point
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algorithm depends on the ratior = �d=�1 (for instance, see Luenberger(1973),
p. 152), where�1 and�d are the minimal and maximal eigenvalues of the
matrixA, respectively. Thus for anyx(k) 2 IRdf(x(k+1)) � �r � 1r + 1�2 f(x(k)) : (1.13)

However, it is the worst-case rate, given by (1.13), not the actual rate, which
simply depends on�1 and�d. As we shall see the situation with the actual
convergence rate is much more complex.

For the quadratic functiong(k) = rf(x(k)) = A(x(k) � x�)
and �k = (g(k))T g(k)(g(k))TAg(k)
and therefore the algorithm can be rewritten asx(k+1) = x(k) � (g(k))T g(k)(g(k))TAg(k) g(k) : (1.14)

Without loss of generality we can takeA = diag(�1; �2; : : : ; �d) with 0 <�1 � : : : � �d: With this assumption, the iteration of the algorithm (1.14)can
be written asx(k+1)i = x(k)i � Pdj=1(g(k)j )2Pdj=1 �j(g(k)j )2 g(k)i for i = 1; : : : ; d : (1.15)

Multiplying both sides ofi-th equation of (1.15) by�i we obtaing(k+1)i = g(k)i � Pdj=1(g(k)j )2Pdj=1 �j(g(k)j )2�ig(k)i for i = 1; : : : ; d : (1.16)

A convenient renormalisation is to setz(k)i = y(k)iPdj=1 y(k)j ; with y(k)i = (g(k)i )2 :
The equations (1.16) then implyy(k+1)i = 0�1� �iPdj=1 y(k)jPdj=1 �jy(k)j 1A2 y(k)i for i = 1; : : : ; d ;
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andz(k+1)i = z(k)i �Pdj=1 �jz(k)j � �i�2Pdl=1 �Pdj=1 �jz(k)j � �l�2 z(k)l for i = 1; : : : ; d : (1.17)

Note thatz(k)i � 0 for i = 1; : : : ; d and
Pdj=1 z(k)j = 1. Therefore, we

can considerz(k)i as a weight on the eigenvalue�i, so that (1.17) defines a
transformation on discrete probability measures supported onf�1; : : : ; �dg.
8.2 CONVERGENCE TO A TWO-DIMENSIONAL

PLANE

The asymptotic behaviour of the sequencefz(k)g generated by (1.17) is
studied inAkaike (1959), Forsythe(1968) andChapter 7of Pronzatoet al(2000).
The main result is that, assuming0 < �1 < �2 � � � � � �d�1 < �d, the
sequence converges to a two-dimensional plane, spanned by the eigenvectorsu1, ud associated with�1 and�d. More precisely, the following result holds.

Theorem 1. Let the objective functionf bef(x) = 12(x� x�)TA(x� x�)
with the eigenvalues ofA satisfying0 < �1 < �2 � � � � � �d�1 < �d.
LetV = span(u1; ud) be the two-dimensional plane generated by the (distinct
orthonormal) eigenvectorsu1, ud corresponding to�1 and �d, respectively.
Then for any starting vectorx(1) for whichuT1 (x(1) � x�) 6= 0 and uTd (x(1) � x�) 6= 0 ; (1.18)

the algorithm attracts to the planeV in the following sense:wT z(k) ! 0 ; k !1 ;
for any non-zero vectorw 2 V ?. Moreover, the sequencefz(k)g of renor-
malised variables defined by(8.1)converges to a two-point cycle:z(2k) ! p u1+(1�p)ud ; z(2k+1) ! (1�p)u1+p ud whenk !1 ; (1.19)

wherep is some number in(0; 1) depending onz(1).
Note that the updating formula (1.17) is exactly the same forthe weightsz(k)i

andz(k)j corresponding to equal�i = �j , and therefore these weights can be
summed. Hence the assumption that all�i are different can easily be extended
to the case of ties among�2; : : : ; �d�1. In the case when at least one of the
eigenvalues�1 or �d is not simple, we still have convergence to a cycle (1.19),
whereu1 andud are certain eigenvectors associated with�1 and�d. These
eigenvectors are determined uniquely only in the case when the eigenvalues



28�1 and�d are simple and (1.18) holds. Also, the result obviously generalizes
to the case when (1.18) is not satisfied (at least one of the scalar products is
equal to zero). The algorithm then attracts to a two-dimensional planeV 0 andfz(k)g converges to a two-point cycle.V 0 is defined by the eigenvectorsui,uj associated with the smallest and largest eigenvalues such thatuTi z(1) 6= 0,uTj z(1) 6= 0. For the sake of simplicity of notations, we shall assume that (1.18)
is satisfied, and thereforeui = u1, uj = ud.
8.3 ASYMPTOTIC RATE

The property stated in Theorem 1 has important consequenceson the asymp-
totic rate of convergence of the steepest descent algorithm. Namely, the actual
rate is determined by the limiting value ofp in (1.19). Under the assumption
thatx(1) � x� does not belong to the two-dimensional planeV , the limiting
value ofp is not arbitrary; as proved in Pronzatoet al (2000), it belongs to the
interval I = �12 � s(�i�); 12 + s(�i�)� ;
where s(�) = p(�d � �)2 + (�1 � �)22(�d � �1) ; (1.20)

andi� is such thatj�i� � �1+�d2 j is minimum over all�i’s, i = 2; : : : ; d � 1.
The smallest possible intervalI isI0 = "12 � p24 ; 12 + p24 # ' [0:14645; 0:85355℄ :
The minimal length intervalI = I0 for the limiting valuep does appear when�i� = �1+�d2 for somei� 2 f2; : : : ; d� 1g.

Assuming that the initial pointx(1) is random and uniformly distributed on a
sphere with the centrex�, the density of the limiting values ofp is well-spread
over the intervalI, see Figure 1.13.

The relation between the limiting valuep in (1.19) and the asymptotic con-
vergence rateR defined in (1.4) is simple. Indeed, Theorem 1 implies that for
any fixedx� and almost allx(1) the asymptotic rate depends only on the value
of p and is given byR(p) = [f(x(k+2))=f(x(k))℄1=2, wherex(k) is associated
with p e1 + (1� p) ed or (1� p) e1 + p ed. This givesR(p) = p(1� p)(�� 1)2[p+ �(1� p)℄[(1� p) + �p℄ ;
with r = �d=�1, the condition number of the matrixA. The functionR(p)
is symmetric with respect to1=2 and monotonously increasing from 0 to1=2.
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Figure 1.13 The density of the limiting values ofp in (1.19);d = 3, �1 = 1; �24; �3 = 10.

The worst asymptotic rate is thus obtained atp = 1=2:Rmax = �r � 1r + 1�2 ;
see (1.13). In terms ofx(1), the worst rate is achieved only whenx(k)1 = �rx(k)d
andx(k)2 = � � � = x(k)d�1 = 0.

Although the limiting behaviour of the algorithm is simple,its behaviour en
route to the attractor is fairly complicated and presents a fractal structure. It is
very difficult, if not impossible, to relate the initial point x(1) and the limiting
valuep (and thus the asymptotic rate).

To give a flavour of the behaviour of the algorithm we can taked = 3,�1 = 1,�2 = 2, �3 = 4 and consider the region of attraction in the two-dimensional
simplex occupied byz1; z2; z3 or a small region around a selected (allowable)
point. Figure 1.14 shows the projection onto the plane(z1; z3) of a typical
region of attraction for(x(k) � x�)=jjx(k) � x�jj.

In Figure 1.15 we used the baricentric coordinates forz1; z2; z3 and have
coloured points in black or white according to whether theirlimit points lie in
a selected half of the intervalI. Since the rate is a function of the limit ‘cycle’
one sees immediately that

(i) The rate depends on the start;
(ii) As we approach the vertices of the simplex given byzi = 1 for somei = 2; : : : ; d� 1, the separation between black and white is arbitrary fine. This

shows that starts closer and closer to these points lead to instability in the rate.
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Figure 1.14 Projection of the region of attraction to a small neighbourhood of a limiting point.
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Figure 1.15 The region of attraction for a half of the intervalI.

It also holds that until a neighbourhood of the limit cycle isreached there,
thefz(k)g sequence may at any stage stay close to a corner or switch between
different corners. At each vertex the interchanging of the trajectories has a
self-similar nature. This kind of behaviour is not unusual in the family of the
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rational maps, which the transformation (1.17) belongs to,but it still came as a
surprise to find such complexity in a very classical algorithm.

In Figure 1.16, the grey level of starting points on the unit sphere depends on
the limiting value ofp in (1.19). Again, this figure illustrates the difficulty of
predicting the limiting attractor for the sequencefz(k)g, and thus the asymptotic
rate of convergence of the algorithm, as a function of the starting point.
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Figure 1.16 Starting points on the unit sphere colored as a function of the limiting rate

8.4 STEEPEST DESCENT WITH RELAXATION

The introduction of a relaxation coefficient
, with 0 < 
 < 1, in the
steepest-descent algorithm totally changes its behaviour. The algorithm (1.14)
then becomes x(k+1) = x(k) � 
 (g(k))T g(k)(g(k))TAg(k) g(k) :
For fixedA, depending on the value of
, the renormalized process either attracts
to periodic orbits (the same for almost all starting points)or exhibits a chaotic
behaviour. Figure 1.17 presents the classical period-doubling phenomenon in
the cased = 2 when�1 = 1 and�2 = 4. Figure 1.18 gives the asymptotic rate
(1.4) as a function of
 in the same situation.
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Figure 1.17 Attractors forz1 as a function of
 (d = 2; �1 = 1; �2 = 4)
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Figure 1.18 Asymptotic rate (1.4) as a function of
 (d = 2; �1 = 1; �2 = 4)
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Numerical results show that for
 large enough (but
 < 1) the asymptotic
rate is significantly better thanRmax = (1� 2r+1)2, the worst-case rate for the
steepest descent algorithm (
 = 1). A detailed analysis of the 2-dimensional
case gives the following results.

(i) If 0 < 
 � 2r+1 , wherer = �2=�1, the process attracts to the fixed pointp = 1 andR = R(
) = 1� 2r
r+1 .

(ii) If 2r+1 < 
 � 4r(r+1)2 , the process attracts to the fixed pointp =2r�
(r+1)2(r�1) , andR(
) = Rmax.
(iii) If 4r(r+1)2 < 
 � 2(p2+1)r(r+1)2 , the process attracts to the 2-point cycle(p1; p2), withp1;2 = 2r � 
(r + 1)�p
(
r2 � 4r + 2
r + 
)2(r � 1) ;

andR(
) = 1� 
.

(iv) For larger values of
 one observes a classical period-doubling phe-
nomenon, see Figure 1.17.

(v) If r > 3+2p2 � 5:828427, the process attracts again to a 2-point cycle
for values of
 larger than
r = 8r(r+1)2 , see Figure 1.17. For the limiting

case
 = 
r, the cycle is given by(p01; p02), withp01;2 = r �r2 � 2r + 5� 2p(r2 � 2r + 5)(5r2 � 2r + 1)�(r � 1)(r + 1)3 ;
and the associated asymptotic rate isR(
r) = (r2 � 6r + 1)=(r2 � 1).

In higher dimensions, the process typically no longer attracts to the 2-
dimensional plane spanned by(u1; ud) and exhibits a chaotic behaviour in
thed-dimensional space. For large values of the relaxation coefficient 
 < 1
the asymptotic convergence rate is typically significantlybetter thanRmax =(1� 2r+1)2, the worst-case rate for the steepest descent algorithm.
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