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Certain convergent search algorithms can be turned into chaotic dynamic systems by

renormalisation back to a standard region at each iteration. This allows the machinery of

ergodic theory to be used for a new probabilistic analysis of their behaviour. Rates of

convergence can be redefined in terms of various entropies and ergodic characteristics

(Kolmogorov and Re!nyi entropies and Lyapunov exponent). A special class of line-search

algorithms, which contains the Golden-Section algorithm, is studied in detail. Their

associated dynamic systems exhibit a Markov partition property, from which invariant

measures and ergodic characteristics can be computed. A case is made that the Re!nyi entropy

is the most appropriate convergence criterion in this environment.

1. Introduction

Random or stochastic methods in optimisation or search are often used as a way of

generating alternatives at each iteration. Here the approach is different. It is shown that,

for certain classes of algorithms, randomness in the ergodic sense is already embedded in

the algorithm. Thus, algorithms which are normally considered as simply convergent can

be shown to reveal ergodic behaviour. In this paper, certain line-search algorithms are

studied.

The method is based on a simple renormalisation idea. Consider an algorithm which

produces a series of nested sets

S
!
[S

"
[S

#
[…

with the target x* lying in each set and convergence consisting of the norm, in some sense,

of S
n
tending to zero as n goes to infinity. At each iteration renormalise S

n
back to S

!
using,

hopefully, some simple transformation such as a linear shift and rescaling. Then this

renormalisation induces a dynamic system on the renormalised location of x*. If
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g
n
(S

n
)¯S

!
is the renormalisation and x

n
¯ g

n
(x*) `S

!
, then this system is given by the

mapping h
n
: x

n
Ux

n+"
.

In a series of papers [6, 10], the authors have used the theory of dynamic systems to study

the asymptotic properties of a number of different line-search algorithms for finding the

root or the minimum of a function. It was found that, with the additional property of

symmetry of the function, the dynamic system, produced by renormalising the search

interval, is time homogeneous. In such cases, the invariant measures of the process can yield

new and valuable properties of the original algorithm. The properties can be summarised

via the Lyapunov exponent and Kolmogorov entropy, or other types of entropy. These can

then be related to rates of convergence of the algorithms. This amounts to a new kind of

stochastic analysis of algorithms, which allow us to discover new algorithms with improved

rates, even when the symmetry condition is relaxed to local symmetry.

In the line-search algorithms to which this paper is confined, the dynamic systems exhibit

a Markov partition property which makes the computation of invariant measures

reasonably tractable. A key suggestion of this paper is that Re!nyi entropy is a natural

alternative to Kolmogorov entropy for algorithms based on contracting sets. This is

because it reflects more closely the size of the set S
n
(in the line-search case an interval). The

technology of the paper, then, is to exhibit a class of line-search algorithms, describe the

Markov process revealed after renormalisation, compute invariant measures and discuss

competing rates of convergence, from both an ergodic and average point of view.

The starting point for both the present paper, and indeed, the entire research

programme, is the Golden-Section and Fibonacci algorithms of Kiefer [4]. In [11] it was

shown that under certain conditions the asymptotic rate of convergence of the Golden-

Section algorithm can be improved from λ¯ (o5®1)}2 down to "

#
(see also Example 7

below) for almost all x* in the initial search interval.

A second order method [4] is defined as follows. Suppose f(x) is a uniextremal function

on [0, 1] with a minimum at an unknown point x* in [0, 1]. Then f(x) is decreasing (non-

increasing) for x%x* and increasing (non-decreasing) for x"x*. If we evaluate f(x) at two

points a and b in [0, 1], 0! a! b! 1, then if

(L) : f(a)& f(b)

we delete [0, a), and if

(R) : f(a)! f(b)

delete (b, 1]. Here (L) and (R) stand for left and right deletion. In each case one

‘observation’ point is carried forward for the next iteration, b for (L) and a for (R), a new

observation point added and the process repeated.

The Golden Section (GS) is the case when b¯ 1®a¯λ¯ (o5®1)}2E 0.6180 and the

lengths of subintervals stay in these ratios after successive iterations. Kiefer showed [4] that

the finite sample size algorithm based on the use of Fibonacci numbers was worst-case

optimal, in that it has the fastest rate of convergence for the worst function for fixed sample

size among all algorithms using only function evaluations. The GS algorithm has this

property asymptotically as the sample size goes to infinity.

Section 2 presents the basic idea of renormalisation, and introduces the dynamic system
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associated with a line-search algorithm. A special class of algorithms, containing the GS

algorithm, is described in Section 3 with some illustrative examples. The associated

dynamic process is presented in Section 4, and the ergodic characteristics are considered in

Section 5. Section 6 is devoted to some examples. The case of locally symmetric functions

is briefly considered in Section 7. Section 8 gives a short conclusion.

2. Renormalisation

The key to the theory is to renormalise the interval, after (L) or (R) deletion, back to

[0, 1]. The following transformation achieves this :

h( f, a, b,x)¯

1

2

3

4

x®a

1®a
if (L)

x

b
if (R).

Under (L), h( f, a, b, [) maps [a, 1] to [0, 1] and under (R) it maps [0, b] to [0, 1]. We can then

always define the algorithm after renormalisation by function evaluation at a
n
, b

n
in [0, 1]

with either a
n

or b
n

being carried forward. If e
n

is the carried forward point (from the

previous iteration), we are at liberty to take a new observation at any point in [0, 1] say

e!
n
, so that

a
n
¯min (e

n
, e!

n
), b

n
¯max (e

n
, e!

n
).

The new iteration is then with a¯ a
n
, b¯ b

n
and the renormalisation h above.

Now under renormalisation x*, the minimiser, is continuously in the move, and we can

track its path.

If at iteration n x* is at x
n
, then at iteration n­1 after renormalisation it is at

x
n+"

¯

1

2

3

4

x
n
®a

n

1®a
n

if (L)

x
n

b
n

if (R).

At this point whether (L) or (R) is satisfied depends upon the function f ([) (which of course

should be renormalised). This makes the study of the dynamic process in general extremely

difficult. However, if f ([) is assumed to be symmetric about x* (about x
n

in the

renormalised version), whether (L) or (R) is satisfied depends only upon the location of x*,

since f(a
n
)& f(b

n
) is equivalent to x

n
& c

n
, with c

n
¯ (a

n
­b

n
)}2. We thus obtain

x
n+"

¯ h(a
n
, b

n
,x

n
)¯

1

2

3

4

x
n
®a

n

1®a
n

if x
n
& c

n
,

x
n

b
n

if x
n
! c

n
.

(1)
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Under (L) (that is, x
n
& c

n
) and (R) (that is, x

n
! c

n
), the point carried forward is b

n
or a

n
,

respectively, which is transformed to

e
n+"

¯

1

2

3

4

b
n
®a

n

1®a
n

if x
n
& c

n
,

a
n

b
n

if x
n
! c

n
.

(2)

A new point e!
n+"

is then chosen and the iteration is repeated with

(a
n+"

, b
n+"

)¯ (min (e
n+"

, e!
n+"

),max (e
n+"

, e!
n+"

)).

We finally obtain a time-homogeneous dynamic system (e
n
,x

n
)U (e

n+"
,x

n+"
). Given a

"
, b

"

and the selection rule for e!
n
, n" 1, the behaviour of the system is determined only by

x
"
¯x*.

For the GS algorithm, the iteration is given by:

(e
n+"

,x
n+"

)¯
1

2

3

4

(1®λ, (1­λ)x
n
®λ) if x

n
& "

#
,

(λ, (1­λ)x
n
) if x

n
! "

#
,

(3)

so that e
n
` ²λ, 1®λ´,cn. As dynamic processes, the Golden Section and the new processes

we are about to describe, have ergodic properties, and in particular invariant measures. We

postpone this discussion to Section 5, where we also derive improved rates of convergence.

3. New algorithms and cycles

The new algorithms will share with the GS algorithm the property that we stay on a fixed

collection of points as the algorithm proceeds, and in this sense they generalise the GS

algorithm. The new point e!
n+"

can be considered as a control, applied when the carried

forward point is e
n+"

, which forces the sequence to remain within the fixed set of points. The

reader is invited to consider the algorithm described in Example 2 below, which has two

pairs (e
n
, e!

n
) given by (1}2, 3}4) and (2}3, 1}3).

Definition 1. The state of the process at iteration n is defined by the pair S
n
¯ (e

n
, e!

n
).

For example, in the case of the GS algorithm there are only two states : (1®λ,λ) and

(λ, 1®λ). For any state S¯ (e, e«), we define the transformation

L(S )¯
b®a

1®a
, R(S )¯

a

b
, (4)

with a¯min (e, e«), b¯max (e, e«). At iteration n, the point carried forward (2) for the

process is thus with this new notation e
n+"

¯L(S
n
) or R(S

n
).

Definition 2. A set of numbers 1¯²e(j)´N
j="

, 0! e(") % e(#) %…% e(N) ! 1 will be called

section invariant if there exists a set of controls ²e«(j)´N
j="

such that, for all states

S (j) ¯ (e(j), e«(j)), L(S (j)) `1 and R(S (j)) `1.
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Figure 1 The directed graph of the GS agorithm.

It is important to note that the same value of e(i) may correspond to several states S (j),

S(k), since different controls e«(j), e«(k) may be applied (see, e.g., Example 7). Also, the

controls e«("),… , e«(N) are not required to be in 1. This gives more freedom and generates

some new processes even in the case N¯ 2 (see, e.g. Example 2 below).

Definition 3. Let 1¯²e(j)´N
j="

be a section-in�ariant set. A set of states

3¯²S (j)´N
j="

¯²e(j), e«(j)´N
j="

such that L(S (j)) `1 and R(S (j)) `1 for all j will be called a section invariant process.

Consider a section-invariant process 3¯²S (j)´N
j="

defined on a section invariant set

1¯²e(j)´N
j="

. For any j ` ²1,… ,N ´ we have L(S (j))¯ e(,(j)) `1 and R(S (j))¯ e(2(j)) `1, with

,( j ) and 2( j ) ` ²1,… ,N ´ denoting the index of the destination state. The process thus

defines a directed graph with N vertices. Each vertex j is the join of two edges directed from

j to ,( j ) and 2( j ), possibly with a loop if either ,( j ) or 2( j ) equals j. Figure 1

presents the graph associated with the GS algorithm.

Definition 4. A section in�ariant process 3¯²S(j)´N
j="

will be called an N-state cycle if no

subset of 3 defines a section-in�ariant process.

Note that each state of any N-state cycle is reachable from some other state, that is

e(i) ` 05N
j="

j1i

L(S (j))1e05N
j="

j1i

R(S (j))1 , ci ` ²1,… ,N ´,

and the graph associated with the cycle is connected, (see Figure 1 and Figure 2 in Example

4). Let us give some examples of cycles.

For the case N¯ 2 the general tableau is
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with L(S (")), R(S (")), L(S (#)) and R(S (#)) ` ²e("), e(#)´. Examples 1–3 provide all two-state

cycles (case N¯ 2), up to reflection around 1}2.

Example 1. (Golden Section).

Example 2.

Example 3.

with e(#) ¯ψ, where

ψ¯
1

3 00
3o69­11

2 1
"

$

®5 0 2

3o69­111
"

$

­11E 0.5698 (5)

is a solution of the equation (1®t)#¯ t$,

e(") ¯ 1®e(#) E 0.4302, e«(") ¯ 1®ψ­ψ#E 0.7549, e«(#) ¯ 1®e«(") E 0.2451.

The situation for N" 2 is more complex because of the range of different configurations

available under (L) or (R). The authors have found all cycles for N¯ 3 by simple computer
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enumeration. The general tableau is

Any given structure, that is when ,( j ) and 2( j ) are set to fixed elements in ²1, 2, 3´, gives

six polynomial equations of first or second degree with six unknowns (the elements of

1¯²e("), e(#), e($)´ and the controls e«("), e«(#), e«($)). Elimination of unknowns leads to one

polynomial equation in one variable. This equation is typically of degree one, two or three.

Its maximum degree, seven, is obtained when ,(1)¯2(1)¯ 2, ,(2)¯2(2)¯ 3 and

,(3)¯2(3)¯ 1. Since e(") % e(#) % e($), we have e«(") " e(") and e«($) ! e($). Because of

symmetry with respect to 1}2, we restrict ourselves to the case e«(#) " e(#). These conditions

imply 2(1) ` ²2, 3´,2(2)¯ 3,,(3) ` ²1, 2´, and ,(1),,(2),2(3) ` ²1, 2, 3´, which gives 108

possible cases. Reachability of e(") (resp. of e(#)) implies that 1 (resp. 2) should appear at least

once in ²,(2),,(3),2(3)´ (resp. in ²,(1),2(1),,(3),2(3)´). These conditions remove,

respectively, 24 and 12 cases. Among the remaining 72 structures, 4 coincide with

Example 1, 12 with Example 2 and 2 with Example 3 (which means that for 18 structures

e(") ¯ e(#) or e(#) ¯ e($)). Additionally, six structures yield e(#) ! e("), and correspond to other

admissible structures by permutation of indices. Finally, one structure has no solution, it

corresponds to ,(1)¯ 1,2(1)¯ 2,,(2)¯ 1,2(2)¯ 3,,(3)¯ 2,2(3)¯ 1. We thus end

up with the 47 three-state cycles presented in the table in the appendix. The numerical

values of e("), e(#), e($), e«("), e«(#), e«($) are obtained as roots of polynomials, and we work

through one example to illustrate the construction of this table.

Example 4. The tableau in this case is
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Figure 2 The directed graph in Example 4.

The corresponding graph is presented in Figure 2.

The analytical expressions for the components of the tableau are determined as follows.

From the definitions of L(S (j)) and R(S (j)) (see (4)), we have

e(#) ¯
e«(")®e(")

1®e(")
, e(#) ¯

e(")

e«(")
.

Eliminating the control e«(") we obtain

e(") ¯
e(#)

#

e(#)
#®e(#)­1

.

Taking e«(#) " e(#) (the convention for the appendix), we obtain for the second line of the

table

e(") ¯
e«(#)®e(#)

1®e(#)
, e($) ¯

e(#)

e«(#)
,

and for the third line

e(#) ¯
e($)®e«($)

1®e«($)
, e($) ¯

e«($)

e($)
.

Solving for roots in [0, 1], we get e(#) ¯ 1®ψE 0.4302, where ψ is defined by (5), and

e(") ¯ψ(1®ψ)E 0.2451, e($) ¯ 1®ψ­ψ#E 0.7549, e«(") ¯ e«(#) ¯ e«($) ¯ψE 0.5698.

Notice that e(#) is solution of the equation t#¯ (1®t)$, e(") satisfies the equation

t$®4t#­5t®1¯ 0 and the equation for e($) is t$­t#®1¯ 0.

Families of cycles are far richer when N" 3. Many structures have no solution, but some

give a continuum of solutions, as illustrated by the following example.

Example 5. The structure is
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where

e(") ¯ 2®
1

e($)
, e«(") ¯

2e($)®1

e($)
#

, e(#) ¯ 1®e($), e«(#) ¯ e($),

e(%) ¯
1

e($)
®1, e«(%) ¯ 0 1

e($)
®11#, e«($) ¯ 1®e($),

and e($) can be considered as a free parameter, with 1}2! e($) !λ to guarantee

0! e(") ! e(#) ! e($) ! e(%) ! 1.

The following tableau allows construction of examples for arbitrarily large N.

Example 6. Let s
n
¯3n

r=!
xr and consider the structure

The way to ‘close ’ the system is to set the term 1®x equal to one term in column 1. For

example

(i) 1®x¯xn, which gives x¯ "

#
when n¯ 1,x¯λ (Golden Section) when n¯ 2, etc.

(ii) 1®x¯xn}s
n
, that is xn+"­xn®1¯ 0, which gives x¯λ when n¯ 1, etc.
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The following example was constructed by putting 1®x¯xn with n¯ 1, that is x¯ "

#
, and

allowing terms up to n­1¯ 3.

4. The dynamic process

Consider the evolution of x
n
, the renormalised value of x* in [0, 1] for any given cycle, with

f ([) symmetric with respect to x*. Let h be defined by iteration (1) when

(a
n
, b

n
)¯ (min (e(i), e«(i)),max (e(i), e«(i))),

namely the iteration in the ith state S (i). The process is completely described by

(i,x), (i
n
,x

n
) at iteration n, which evolves in ²1,… ,N ´C [0, 1] :

(i,x)U

1

2

3

4

0,(i),
x®a(i)

1®a(i)1 if x& c(i)

02(i),
x

b(i)1 if x! c(i),

(6)

where c(i)¯ (a(i)­b(i))}2, a(i)¯min (e(i), e«(i)), b(i)¯max (e(i), e«(i)) and ,(i),2(i) are the

destination states.

To study the ergodic properties of the process, we shall define an equivalent dynamic

process in [0, 1]. The interval [0, 1] is divided into N subintervals

∆
i
¯ [(i®1)}N, i}N ], i¯ 1,… ,N,
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with the state S (i) associated with ∆
i
, that is, for each state S (i) we associate a new variable

z living in ∆
i
,

z¯
x

N
­

i®1

N
.

By concatenating these domains ∆
i
we can define a dynamic process z

n+"
¯T(z

n
) on the

whole interval [0, 1], with

T(z)¯3
N

i="

0z®i}N

1®a(i)
­

,(i)

N 1 I
[c

(i)
/N+(i−")/N,i/N)

(z)

­3
N

i="

0z®(i®1)}N

b(i)
­

2(i)®1

N 1 I
[(i−")/N,c

(i)
/N+(i−")/N)

(z), (7)

where I!([) is the indicator function of the set !. Both the original state S (in) and the

position of x
n

can be determined from the value of z
n
. Note that in (7), the indicators

I
[c

(i)
/N+(i−")/N,i/N)

(z) and I
[(i−")/N,c

(i)
/N+(i−")/N)

(z) correspond, respectively, to the conditions

x& c(i),x! c(i) in (6). Also, note that the convention used to define the mapping

at the points i}N, i¯ 1,… ,N, is arbitrary, since these values of z can only be reached if the

process is initialised at x*¯ 0 or 1, and in this case x
n
¯ 0 or 1 for all n. The process z

n

associated with a given cycle is thus characterised by a piecewise linear mapping

T : [0, 1]j [0, 1].

Example 2. (continued). The mapping T([) for the process z
n

is presented in Figure 3.

In the next section we study the ergodic properties of the dynamic process z
n
.

5. Invariant measures, asymptotic rates and entropies

5.1. Existence of an ergodic invariant measure

The mapping T([) defined by (7) is expanding, since 0! a(i)! 1 and 0! b(i)! 1 for all i.

Thus, there exists a T-invariant absolutely continuous measure µ
z
(see [1, p. 210]). Since for

at least one i

(0, 1)cT 00i®1

N
,

i

N111W,

its density φ
z
([) is certainly discontinuous (see, e.g., [2, p. 195]). This density φ

z
([) belongs

to L
"
([0, 1],µ), where µ is the Lebesgue measure, and it can therefore be normalised and

considered as a probability density. In what follows we assume that !"
!
φ

z
(z) dz¯ 1. The

invariant density φ
z
([) is the eigenfunction of the Perron–Frobenius operator with the

eigenvalue 1:

φ
z
(z)¯ 3

yj
`*(z)

1

rT «(y
j
)r

φ
z
(y

j
), (8)
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Figure 3 The graph of the mapping zUT(z) in Example 2. From S (") (z ` [0, 1}2]) we go to

S (") or S (#) (z ` [1}2, 1]). From S (#) we go to S (").

where *(z)¯T−"(z)¯²y
j
rT(y

j
)¯ z´, and T «([) is the derivative of the mapping T([). The

invariant measure µ
z
([) is ergodic, since for any set !,

!Z [0, 1], !¯T−"(!)3µ
z
(!)¯ 0 or 1,

where T−"(!)¯²T−"(z), z `!´. This follows from the expanding property of T([).

Ergodicity implies that 1 is a simple eigenvalue of the Perron–Frobenius operator. Thus

φ
z
([) is the (unique) normalized ergodic density associated with the mapping T([).

5.2. Partitions and Markov maps

Consider the set ! defined by the endpoints of the intervals ∆
i
, together with the points in

the ∆
i
’s associated with the original c(i)’s, that is

!¯ 05N
i="

(c(i)­(i®1)

N *1e05N
i=!

( i

N*1 .
The set ! defines a finite partition of [0, 1] into closed intervals )!

i
, i¯ 1,… ,M

!
. Assume

that x
"
¯x* has a uniform initial distribution, and that the initial state is fixed or randomly



Stochastic Analysis of Con�ergence 217

chosen. The variable z
"

then inherits an initial distribution, piecewise constant on the

intervals )!
i
.

Applying the transformation T([) given by (7) preserves the piecewise constant property,

but now on the intervals )"
i
, i¯ 1,… ,M

"
, defined by the points in 3"¯AeT(!).

Continuing in this way, we define 3¢ as

3¢ ¯ 5
¢

n=!

Tn(!),

with Tn(!)¯²Tn(z), z `!´, which in turn defines a (possibly infinite) partition of [0, 1].

The intervals )
i
, i¯ 1,… ,M%¢, of this partition form the states for a representation of

the dynamic system z
n

defined by (7) as a Markov chain, with initial distribution

p
i
¯Pr (z

"
`)

i
), i¯ 1,… ,M.

For any n" 1 and any i ` ²1,… ,M ´, the distribution of z
n

conditional to z
n
`)

i
is uniform

on )
i
. Also, by definition of 3¢,

T()
i
)¯ 5

j`Ω
i

)
j
,

where Ω
i
X ²1,… ,M ´.

Example 2. (continued). The sets ! and 3¢ are

!¯²0, 5}16, 1}2, 3}4, 1´, 3¢ ¯²0, 1}8, 1}4, 5}16, 3}8, 1}2, 2}3, 3}4, 5}6, 11}12, 1´.

The intervals )
i
that define the partition of [0, 1] are

)
"
¯ [0, 1}8], )

#
¯ [1}8, 1}4], )

$
¯ [1}4, 5}16], )

%
¯ [5}16, 3}8], )

&
¯ [3}8, 1}2],

)
'
¯ [1}2, 2}3], )

(
¯ [2}3, 3}4], )

)
¯ [3}4, 5}6], )

*
¯ [5}6, 11}12], )

"!
¯ [11}12, 1].

The transitions of the Markov chain can be read from Figure 3, and are defined as follows:

)
"
j)

'
, )

#
j)

(
e)

)
, )

$
j)

*
, )

%
j)

#
, )

&
j)

$
e)

%
e)

&
,

)
'
j)

"
e)

#
, )

(
j)

$
e)

%
, )

)
j)

#
, )

*
j)

$
e)

%
, )

"!
j)

&
. *

We can now define the transition probability from )
i
to )

j
as:

p
ij
¯

1

2

3

4

){
j

3
k`Ω

i

){
k

if j `Ω
i

0 otherwise,

(9)

where ){ is the length of the interval ). We shall denote by P the matrix with elements p
ij
.

This representation will be used in Section 5.4 to compute the entropies to be defined in

Section 5.3.

Ergodicity of T([) is equivalent to the uniqueness of the absorbing class for the Markov

chain. The eigenvector associated with the simple eigenvalue 1 for the matrix PT gives the
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invariant distribution for the Markov chain, denoted by pa
i
, i¯ 1,… ,M, with 3M

i="
pa
i
¯ 1.

The invariant measure for z is then

φ
z
(z)¯3

M

i="

φ
i
I)

i

(z),

with φ
i
¯ pa

i
}){

i
. This measure can also be obtained through the solution of the

Perron–Frobenius equation as follows. Since T ([) is piecewise linear, φ
z
([) is piecewise

constant on the intervals )
i
, and is defined by φ

z
(z)¯φ

i
, z `)

i
. Equation (8) then reduces

to a linear equation of the form Φ
z
¯QΦ

z
, with Φ

z
¯ (φ

"
,… ,φ

M
)T, and the φ

i
’s are

therefore obtained as the solutions of an eigenvalue problem.

From the density for z
n

we deduce the density for x
n
. Define φ(i)

x
([) as follows:

φ(i)

x
([)¯Pr ²S¯S (i)´¬φ

x
([rS¯S (i)),

that is, the conditional density of x in the state S (i) multiplied by the invariant probability

of being in this state. We have

φ(i)

x
(x)¯

1

N
φ

z 0x­(i®1)

N 1 ,
and

φ
x
(x)¯3

N

i="

φ(i)

x
(x)¯

1

N
3
N

i="

φ
z 0x­(i®1)

N 1 .
From this we can construct the matrix Π of transition probabilities for the states

S (i), i¯ 1,… ,N. Let ,(i)¯ j and 2(i)¯k, the transition probabilities π
ij

from S (i) to S ( j)

and π
ik

from S (i) to S (k) are simply given by

π
ij
¯
& i/N

(c
(i)

+(i−"))/N

φ
z
(z) dz

& i/N

(i−")/N

φ
z
(z) dz

and π
ik

¯
& (c

(i)
+(i−"))/N

i−"/N

φ
z
(z) dz

& i/N

(i−")/N

φ
z
(z) dz

.

Example 2. (continued). The matrix Q is defined from the slopes of the transformation T([)

and can be read from Figure 3,

Q¯

E

F

0

0

0

0

0

3}4

0

0

0

0

0

0

0

0

0

0

3}4

3}4

0

0

0

0

0

0

0

0

0

0

3}4

0

0

0

0

1}2

0

0

0

0

0

0

1}2

1}2

1}2

0

0

0

0

0

0

0

0

0

0

2}3

2}3

0

0

0

0

0

0

2}3

2}3

0

0

0

0

0

0

0

0

0

0

2}3

0

0

0

0

0

0

0

2}3

2}3

0

0

0

0

0

0

0

2}3

0

0

0

0

0

0

0

0

0

G

H

,
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from which we determine

Φ
z
¯ (0, 16}7, 16}7, 16}7, 0, 0, 12}7, 12}7, 12}7, 0)T.

The density φ
x
([) is thus

φ
x
(x)¯ )

(
I
["%,

$

%]
(x)­'

(
I
["$,

&

']
(x),

and the matrix of transition probabilities for this 2-state cycle is given by

Π¯ 01}4

1

3}4

0 1 .
The dynamic processes associated with the cycles considered here generally have the

strong mixing property [1, p. 224], that is, their transition matrix Π satisfies (Πn)
ij
" 0c(i, j ),

for some n" 0. However, some cycles generate ergodic dynamic systems which do not

have the strong mixing property. This is the case, for instance, when N¯ 2 for Example 3,

when N¯ 3 with

,(1)¯2(1)¯ 2, ,(2)¯2(2)¯ 3, ,(3)¯2(3)¯ 1

(see Section 3). It is also the case when the cycle corresponds to the symmetric algorithms

considered in [10].

In many cases, M is finite, and T([) becomes a Markov map (see [2, p. 196]). The

computation of invariant distributions is then straightforward. However, the fact that

partitions 3¢ might be infinite can be proved by an example.

Example 5. (continued). Take c as any non-algebraic number, 1}2! c!λ, then the

finiteness of 3¢ would imply that c satisfies some polynomial equation.

5.3. Asymptotic rates and entropies

Define the rate at iteration n, from (i
n
,x

n
) to (i

n+"
,x

n+"
), as

r
n
¯ (1®a

n

b
n

if x
n
& c

n
,

if x
n
! c

n
,

with c
n
¯ (a

n
­b

n
)}2, (a

n
, b

n
)¯ (min (e(in), e«(in)),max (e(in), e«(in))). The true length of the

unnormalised interval after the nth iteration is thus

L
n
¯ 0

n

k="

r
k
. (10)

We define the (logarithmic) asymptotic convergence rate of the search algorithm as

ρ¯®lim
nU¢

1

n
logL

n
¯®lim

nU¢

1

n
3
n

k="

log r
k
,

and the limit exists for cycles, since the function log r(x) is piecewise constant on [0, 1]. For
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instance, in state S (i) one has

r(x)¯
1

)T « 0x­(i®1)

N 1 )
.

This implies that ρ is also the Lyapunov exponent Λ of the dynamic process z
n
, where for

a general mapping T([) the Lyapunov exponent can be defined as

Λ¯ lim
nU¢

1

n
3
n

k="

log rT «(z
k
)r,

if this limit exists and is the same for almost all z
"
. A less important alternative is

r¯ lim
nU¢

1

n
3
n

k="

r
k
.

Note that larger values of ρ and smaller values of r are better.

Taking now the Bayesian viewpoint, we can assume that x* has a uniform prior density

on the initial interval [0, 1]. For any given x*, each iteration reduces, by left or right

deletion, the length of the uncertainty interval T
n
(x*) in which x* lies at iteration n. The

interval T
n
(x*) has length L

n
¯L

n
(x*) defined by (10), and a natural performance criterion

is given by its expected length

EL
n
¯E

x*
²L

n
(x*)´.

A less natural possible alternative is

E logL
n
¯E

x*
²logL

n
(x*)´.

The expected length EL
n

and the expected log-length E logL
n

tend, respectively, to 0 and

®¢ as n tends to infinity, so that we shall consider instead the characteristics

Eρ ¯®lim
nU¢

1

n
logEL

n
, H¯®lim

nU¢

1

n
E logL

n
,

under the condition that these limits exist. Note that larger values of Eρ and H are better.

Moreover, Jensen’s inequality implies

®E
x*

²logL
n
(x*)´&®logE

x*
²L

n
(x*)´,

so that H&Eρ.

Assume that at iteration n& 1 the uncertainty interval is T
n
(x*)X [0, 1) with x* having

a uniform density in a cell C
n
¯ [s

n
, t

n
)XT

n
. It is straightforward to check that, at iteration

n­1, C
n+"

¯ [s
n+"

, t
n+"

)X [s
n
, t

n
), and C

n+"
ZT

n+"
ZT

n
. The updating rules for s

n
and t

n

are obtained from left and right deletion rules under the symmetry assumption for f([), as

in (1).

All x* in a cell C
n

lead to the same sequence of left and right deletions and intervals T
n

and C
n
¯ [s

n
, t

n
). Moreover, the intervals C

n
(x*) and C

n
(x*«) corresponding to different
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sequences of left and right deletions do not intersect. The interval [0, 1) can thus be

partitioned into a union of cells C (i)

n
in which the behaviour of the algorithm is the same

up to iteration n. Since the initial density is uniform, the probability that x* is in a particular

cell C (i)

n
¯ [s(i)

n
, t(i)

n
) is p(i)

n
¯ t(i)

n
®s(i)

n
, with

p(i)

n
" 0, 3

i`*
n

p(i)

n
¯ 1.

The index set *
n

at iteration n satisfies g*
n
% 2n, since each cell is divided into two parts

at most at each iteration. We thus have for the expected log-length

E logL
n
¯ 3

i`*
n

p(i)

n
logL(i)

n
,

and for the expected length

EL
n
¯ 3

i`*
n

p(i)

n
L(i)

n
,

with L(i)

n
¯L

n
(x*) for all x* in C (i)

n
.

When the renormalisation is used, T (i)

n
is renormalised in [0, 1], L(i)

n
to 1 and for a cycle

the length l (i) of the renormalised cell C (i)

n
can only take a finite number of values. The ratio

L(i)

n
}p(i)

n
thus satisfies

1!
L(i)

n

p(i)

n

% c¯max
i

1

l (i)
,

so that

Eρ ¯®lim
nU¢

1

n
log 3

i`*
n

( p(i)

n
)#, (11)

when the limit exists. Following the same argument, we get

H¯®lim
nU¢

1

n
3
i`*

n

p(i)

n
log p(i)

n
. (12)

The criterion H thus coincides with the Kolmogorov entropy (see [1, p. 214]) of the dynamic

process of Section 4. The Kolmogorov entropy is based on the Shannon entropy of the

partition 5
i`*

n

C (i)

n
. Similarly, the criterion Eρ (11) coincides with the entropy of the

dynamic process based on the (second-order) Re!nyi entropy [9] of the same partition (see

also [3]). The next subsection is devoted to the computation of the criteria ρ, r and Eρ.

5.4. Computation of rates and entropies

From Birkhoff’s ergodic theorem (see [2, p. 44]), the ergodic rates ρ and r for the process

can be computed directly from

ρ¯®3
M

i="

pa
i
log r

(i)
, r¯3

M

i="

pa
i
r
(i)

, (13)

where r
(i)

is the rate for z in the interval )
i
, r

(i)
¯ 1}rT «(z)r for z `)

i
.
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We shall use the Markov chain representation of Section 5.2 to show the equivalence

between different ergodic characteristics of the process.

Theorem 1. Assume that the Marko� chain defined in Section 5.2 has only one absorbing class.

Then

H¯ ρ¯Λ¯®3
M

i="

3
M

j="

pa
i
p
ij

log p
ij
,

where the p
ij
’s are defined by (9) and ²pa

i
´ is the in�ariant distribution for the Marko� chain.

Proof. The equality ρ¯Λ has already been shown in Section 5.3. Since the Markov chain

has only one absorbing class, the invariant distribution ²pa
i
´ is uniquely defined. The

property

H¯®3
M

i="

3
M

j="

pa
i
p
ij
log p

ij

is then a well-known result for the Kolmogorov entropy for Markov shifts (see Theorem

4.21 in [1]). Note that we use here the partition of [0, 1] into intervals )
i
, as defined in Section

5.2, as the initial partition when computing H. Using

p
ij
¯

1

2

3

4

){
j

3
k`Ω

i

){
k

¯
){
j

1

r
(i)

){
i

if j `Ω
i

0 otherwise,

we then get 3M

j="
p
ij
log p

ij
¯ log r

(i)
by simple manipulation. Using the expression (13) for

ρ, one then gets the result. *

Remark 1. The equality H¯ ρ also follows from the Shannon–McMillan–Breiman theorem

(see [1, p. 214]), which implies that for almost all x* in [0, 1], ®
1

n
logL

n
(x*) tends to H as

n tends to infinity.

We can also obtain a closed-form expression for Eρ.

Theorem 2. Assume that M is finite, and that the Marko� chain defined by P has a unique

absorbing class. Let P« be the transition matrix restricted to this class. Assume that P« has the

strong mixing property (see Section 5.2 for a definition), and define P!

#
as the matrix with

elements (P!

#
)
ij
¯ (P!

ij
)#. Assume, moreo�er, that the initial probability of being in the

absorbing class is equal to 1. Then

Eρ ¯®logλ
max

(P!

#
). (14)

Proof. We consider the partition of [0, 1] in intervals )
i
as defined in Section 5.2. Let )!

i
,

i¯ 1,… ,M « be the intervals corresponding to the absorbing class for P. The probability
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Pr (z
"
`)!

i
"

, z
#
`)!

i
#

,… , z
n
`)!

in

) is equal to p!
i
"

p!
i
"
i
#

…p!
in−"

in

, where (i
"
,… , i

n
) ` ²1,… ,M «´n

and p!
i
, i¯ 1,… ,M « defines the initial distribution. Then, Eρ defined by (11) can be written

as

Eρ ¯®lim
nU¢

1

n
log 03M

«

i
"
="

… 3
M «

in="

( p!
i
"

p!
i
"
i
#

…p!
in−"

in

)#1
¯®lim

nU¢

1

n
log ((p!

#
)T (P!

#
)n 1),

where (p!

#
)T ¯ (( p!

"
)#,… , ( p!

M «)#) and 1T ¯ (1,… , 1). Since P!

#
is strong mixing, it follows

from Perron–Frobenius theorem (see [2, Theorem 7.25, p. 205]) that its maximal eigenvalue

λ
max

(P!

#
) is simple and

Eρ ¯®lim
nU¢

1

n
((p!

#
)T u) (vT 1)λ

max
(P!

#
),

where u is the eigenvector associated with λ
max

(P!

#
) and v is the eigenvector of (P!

#
)T

associated with the same eigenvalue. Both vectors have strictly positive elements and satisfy

uT v¯ 1. We thus get (14). *

The criterion Eρ corresponds here to the limiting behaviour of the expected length of the

uncertainty interval. It is interesting to note that it does not seem to have been considered

in the study of dynamic systems, although it is more natural from a practical point of view

than the criterion ρ, which corresponds here to the limiting behaviour of the expectation

of the logarithm of the length of the uncertainty interval.

Note that the condition of Theorem 2 of being initially in the absorbing class can always

be achieved by a proper choice of the initial state and uncertainty interval. Indeed, if the

initial state of the algorithm is S (i), the probability of being in the states of the Markov

chain (i.e. the intervals )
j
) associated with the interval ∆

i
is one. An adjustment of the prior

distribution of z
"
over the )

j
’sZ∆

i
, that is restricting the support to some of the )

j
’s, is then

equivalent to a suitable expansion of the uncertainty interval for x*, keeping its density

uniform over the original interval (see [8] for elaboration of this point). Such a choice of

the initial distribution p
i
, i¯ 1,… ,M over the states of the Markov chain may be critical

for the asymptotic worst-case behaviour of the algorithm. Indeed, it appears that the worst

rates may be associated with the transient states of the chain (see [8]). The fact that Eρ is

affected by the choice of the p
i
’s, i¯ 1,… ,M, whereas ρ is not another indication that Eρ

is a more refined characteristic of the asymptotic behaviour of the algorithm.

We shall now consider a collection of examples.

6. Examples

Example 1. (Golden Section, continued). There are two states only, with

²e("), e(#)´¯ ²1®λ,λ´, e«(") ¯ e(#), e«(#) ¯ e("),

and the dynamic process is defined by (3). The invariant measure has the step-function

density shown in Figure 4.
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Figure 4 The graph of the invariant density of the mapping (3).

The asymptotic rates are r¯λE 0.6180 and ρ¯Eρ ¯®logλE 0.4812. The GS cycle is

the best among two-state cycles.

As we shall see soon for any N" 2 there are cycles that are better than Golden Section

(see also [5] where several 5- and 6-state cycles are detailed).

Example 2. (continued). From (13), where the values of T «(z) are found in Figure 2, we

get the ergodic rates ρ¯ 4}7 log 2 and r¯ 19}28. The value of Eρ is ®logλ
max

, with λ
max

the

largest real root of 16t%®8t#®t­1, that is λ
max

E 0.6748 and Eρ E 0.3933.

Example 4. (continued). The invariant density for x is given by:

φ
x
¯φ(")

x
(x)­φ(#)

x
(x)­φ($)

x
(x),

with

φ(")

x
(x)¯KI

[
a
#
,
"

#]
(x),

φ(#)

x
(x)¯K[2(ψ#­1) I

[
b
#
,
a+b
# ]

(x)­(ψ#­ψ­1) I
[
a+b
#

,
"

#]
(x)

­(ψ#®ψ­2) I
[
"

#
,
"+b
# ]

(x)],

φ($)

x
(x)¯K[2(1®ψ­ψ#) I

[
c
#
,
"

#]
(x)­2(ψ#­1) I

[
"

#
,
b+c
# ]

(x)

­(2ψ#­ψ­1) I
[
b+c
#

,
ψ+c
# ]

(x)­(3®ψ­2ψ#) I
[
ψ+c
#

,
ψ+"

# ]
(x)

­(ψ#®ψ­3) I
[
ψ+"

#
,
c+"

# ]
],

and the asymptotic rates are given by

ρ¯®
K

2
[(4ψ#®3ψ­3) logψ­(3ψ#®3ψ­log (1®ψ)

­(5ψ#®11ψ­6) log (1®ψ­ψ#)]E 0.5575,

r¯
K

2
(5ψ#­6ψ®2)¯

1017ψ#®1529ψ­1753

2075
E 0.5841,
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where ψ is defined through (5) and

K¯
2

12ψ#®17ψ­11
¯

688®84ψ­482ψ#

2075
E 0.3839

is the normalisation constant.

The value of Eρ equals ®logλ
max

, where λ
max

is the unique real root of the polynomial

t*­(3ψ#®2ψ) t(­(2®3ψ®ψ#) t'­(4ψ®4ψ#®1) t&­(7®14ψ­3ψ#) t$

­(15®40ψ­24ψ#) t#­(24®33ψ®16ψ#) t­(®16­56ψ®49ψ#).

This gives Eρ E 0.54922. The cycle of this example is the best among 2- and 3-state cycles

according to ρ- and r-criteria, and in particular is significantly better than the Golden

Section.

Example 7. In this example the asymptotic log-rate ρ tends to the optimal one

(ρ¯ log 2E 0.693147)

when the number of states is increased to infinity. We take e«(k) ¯ e(k)}2 when

e(k) ¯ 1}(1­2k) and e«(k) ¯ (1­e(k))}2 when e(k) ¯ 1®1}(1­2k). We postpone the

discussion on the initialisation of the process to the end of the example. The states and

controls are completely defined by the index k, except when k¯ 0. We then simply have to

keep trace of the previous state and action: if the previous value of e was such that

e
n−"

! 1}2 (i.e. e
n−"

¯ 1}(1­2k), k& 1) with the decision (R), then e
n
¯ 1}2 and e!

n
¯ 3}4.

The symmetrical situation is handled in the same way. We thus introduce a binary variable

s ` ²0, 1´, and the states and control are defined as in the following tableau:

The collection of pairs (e(k,s), e«(k,s)) can be made finite by using a modified control when e

is close to 0 or 1, i.e. when k is large. Let K be the maximal admissible value of k, we define
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the following controls when k¯K :

An important feature of this cycle is that the invariant measures φ(k,s)

x
([) conditioned on

any given state (k, s) are uniform between e(k,s) and e«(k,s). The ergodic probabilities of the

events (L) and (R) are then equal to 1}2 for k!K. When k¯K, the ergodic probability

of the transition (K, s)U (K®1, s) is one. The asymptotic rates can then be calculated

analytically,

r(K )¯
1

1­2K 02K−"­
1

2­2K
­

1­2K−"

1­2K 1­ 2K−$

1­2K
3
K−#

k=!

1

2k(1­2k)
,

and

ρ(K )¯
2K

1­2K
log 2,

which tends to log 2 as K increases. The value of Eρ ¯®logλ
max

is obtained from

λ
max

¯ t*}4 where t* is the largest real root of the polynomial

tK+#®2tK+"®4tK­8tK−"­t®4.

This satisfies λ
max

" 1}2 and tends to 1}2 as K increases.

The process can be initialised with (e(α), e«(α))¯ (0, 1). Consider the pairs of states and

controls (e(β), e«(β))¯ (1, 1}2), (e(γ), e«(γ))¯ (0, 1}2). We use the following tableau

We can easily check that this initialisation has no influence on the asymptotic characteristics

of the algorithm.
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7. Asymptotic behaviour for locally symmetric functions

Previous asymptotic results hold under the assumption that the function f([) is uniextremal

and symmetric. A natural question concerns the generalisation of these results to the case

where f([) is locally symmetric :

f(x)¯ f(x*)­C
"
rx®x*rγ­O(rx®x*rβ+γ) for some β" 0, (15)

with C
"
" 0, γ" 0. Note that if f([) is smooth at x*, then (15) holds with γ¯ 2. In [7], the

asymptotic behaviour of the Golden-Section algorithm is then shown to be the same as for

symmetric functions. The proof is based on a self-correcting property of the associated

dynamic process, namely if at iteration n we delete the wrong part of the interval because

of non-symmetry of f([), that is if we go from z
n
to z!

n+"
, then in a finite number of iterations

the iterates of z!
n+"

will coincide with those of z
n+"

that would obtain if f([) had been

symmetric. This property is satisfied for most of the cycles considered in this paper. In

particular, it holds for Example 7, which has the important consequence that there exist

cycles with rates ρ and Eρ arbitrarily close to the optimal value log 2 for locally symmetric

functions. An algorithm that achieves the optimal ergodic rate of ρ¯ log 2 for functions

satisfying (15) is detailed in [11].

8. Conclusions

The ergodic theory of dynamic systems has been used for a new probabilistic analysis of

the convergence of a class of line-search algorithms. The construction of the associated

dynamic systems and Markov partitions, and the calculation of their ergodic characteristics

has been detailed and illustrated by a series of examples. The fact that convergence criteria

coincide with various kinds of entropy has been demonstrated. In particular Re!nyi entropy

appears to be the most appropriate convergence criterion in this context.

Acknowledgements

This work was supported by a French–British Alliance grant (nx94002), by the UK

Engineering and Physical Science Research Council grant for the second author, and by a

Visiting Fellowship from CNRS for the third author.



228 L. Pronzato, H. P. Wynn and A. A. Zhiglja�sky

Appendix: table of all three-state cycles for ε′(2)  " ε(2)
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