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1 Introduction

We consider the minimisation of a uniextremal function f(.) on a given interval [A,B]
using a “second-order” algorithm, as defined by Kiefer (1957). Let x∗ be the unknown
point at which f(.) is minimum, with f(.) monotonously increasing (resp. decreasing)
for x > x∗ (resp. x < x∗). At iteration n we compare the values of f(.) at two
points Un and Vn in the current uncertainty interval [An, Bn], with Un < Vn. Then,
if f(Un) ≥ f(Vn) we delete [An, Un), otherwise we delete (Vn, Bn]. Note that, in a
practical implementation of the algorithm, both [An, Un) and (Vn, Bn] can be deleted
in the case where f(Un) = f(Vn) (but the algorithm should then be reinitialised). This
will not be considered here because it has no effect on the performance characteristics
that are considered. The remaining part of the interval defines the uncertainty interval
[An+1, Bn+1] for the next iteration, see Figure 1. On this figure, (R) and (L) stand
respectively for Right and Left deletion. In each case, one of the two points Un, Vn is
carried forward to [An+1, Bn+1]. Let En+1 denote this point. At iteration n+1 we thus
only need to compare f(En+1) to the value of f(.) at a new point E ′

n+1. Notice that
the actual values of the function f(.) are not used, which makes it possible to optimize
a function defined e.g. by a convergent series, for which arbitrary precise bounds can
be constructed. A second-order line-search algorithm is therefore defined by the choice
of the:

(i) initial uncertainty interval [A1, B1] ⊇ [A,B],

(ii) initial test-point E1 ∈ [A1, B1],

(iii) selection rule for E ′
n+1, n ≥ 0.

POSSIBLE LOCATION OF FIGURE 1

The most famous algorithm in this class is the Golden-Section (GS) algorithm, for
which

[A1, B1] = [A,B] , E1 = A1 + λL1 ,

E ′
n =

{
An + λLn if En = An + (1− λ)Ln ,
An + (1− λ)Ln if En = An + λLn ,

where Ln = Bn − An and where λ =
√

5−1
2

' 0.61804 is the solution of λ2 + λ = 1
and is called the Golden-Section ratio. The key property of the algorithm is that En+1

satisfies:
En+1 − An+1

Ln+1

∈ {1− λ, λ} . (1)

This algorithm is known to be asymptotically worst-case optimal in the class of all
uniextremal functions, see [5] and [4], Theorem 9.2.2, p. 181. The reduction, or
convergence, rate at iteration n is defined as

rn =
Ln

Ln+1

, (2)
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so that

Ln = L0

n−1∏

i=0

ri ,

with L0 = B − A. For the GS algorithm, r0 = 1 and rn = λ, ∀n ≥ 1, so that
Ln = L0λ

n−1. When the number of function evaluations is fixed, say equal to N , the
worst-case optimal algorithm in the sense of LN is the Fibonacci algorithm [5], for
which

LN =
L0

FN+1

, (3)

where {Fi}∞i=1 is the Fibonacci sequence, defined by F1 = F2 = 1 and Fn = Fn−1 +
Fn−2, n > 2.

This paper aims at promoting a generalisation of the GS algorithm, with four
possible values for En+1−An+1

Ln+1
, see (4). This algorithm, which we call GS4, has better

asymptotic and finite sample performances than the GS algorithm for functions locally
symmetric around their minimum point x∗, and is the best within a class presented in
[7, 8].

1.1 Outline of the paper

The algorithm GS4 is presented in Section 2. A key idea for the study of its behaviour
is renormalisation, which is explained in Section 3, where we also introduce a dynamic
system and Markov chain associated with the algorithm. Section 4 is devoted to the
study of the finite sample behaviour of the algorithm GS4. Section 4.1 introduces
some performance characteristics for line-search algorithms. The case of functions
symmetric around x∗ is considered in Section 4.2. Robustness of the performance
characteristics with respect to non-symmetry is investigated in Section 4.3. The study
of the asymptotic behaviour of the algorithm GS4 is considered in Section 5. The
invariant measure for the dynamic system associated with the algorithm is presented
in Section 5.1. The ergodic properties of the algorithm are studied in Section 5.2. In
Section 5.3 we establish relations between limits of the performance characteristics of
Section 4.1 and various entropies of the dynamic system.

Although we only consider here the particular case of the GS4 algorithm, the
methodology which is used for studying convergence can be applied to some other
search algorithms, see, e.g. [7]. Among the results that will be presented we want to
draw special attention on the following ones: (i) expansion of the initial uncertainty
interval can improve finite sample and asymptotic performances, see Sections 4.2 and
5.2; (ii) classical ergodic characteristics of dynamic systems, such as Lyapunov expo-
nent or Kolmogorov entropy may not be suitable as performance characteristics for
search algorithms, see Section 5.2 and 5.3.
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2 The GS4 algorithm

We generalise the property (1) of the GS algorithm to

En+1 − An+1

Ln+1

∈ {a, b, c, d} , (4)

with a, b, c and d in [0, 1]. Such an algorithm is called 4-point cycle in [8]. As pointed
out in this paper, there are infinitely many possible choices for (a, b, c, d). For the
choice proposed hereafter, the ergodic characteristics of Section 5.2 are close to their
best achievable values, and, moreover, the finite sample characteristics of Section 4.1
are close to their limits.

Define a as the smallest real positive root of

2t4 − 8t3 + 11t2 − 7t + 1 = 0 , (5)

and
a′ = 2a− a2 , b = 2a3 − 4a2 + 3a , c = 1− b , d = 1− a , (6)

so that

a ' 0.19412 , a′ ' 0.35055 , b ' 0.44625 , c ' 0.55375 , d ' 0.80588 .

The algorithm GS4 is then defined as follows.

Step (0): Let f(.) be the function to be minimized on [A,B]. Choose N and/or δ to
define the stopping rule of Step (iii).

Step (i): Compute A1 = A− ε(B −A), B1 = B + ε(B −A), with ε = 1−a
2
' 0.43008.

Take E1 = A1 + b(B1 − A1), compute f(E1) and set n = 1.

Step (ii): Compute E ′
n according to the following rule :

E ′
n =





An + a′Ln if En = An + aLn ,
An + cLn if En = An + bLn ,
An + bLn if En = An + cLn ,
An + (1− a′)Ln if En = An + dLn .

(7)

Compute f(E ′
n).

If En < E ′
n set U = En , V = E ′

n , fU = f(En) , fV = f(E ′
n) ,

otherwise set U = E ′
n , V = En , fU = f(E ′

n) , fV = f(En) .

Step (iii):

If fU < fV set [An+1, Bn+1] = [An, V ] ,
otherwise set [An+1, Bn+1] = [U,Bn] .

If n + 1 ≥ N and/or Ln+1 ≤ δ stop; otherwise set n + 1 → n and go to Step (ii).
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A key point in the structure of the algorithm is that for any (a′, b, c, d) satisfying (6),
En+1 satisfies (4) whatever the value of a in (0, 1− λ), where λ is the Golden Section.
This can easily be checked. The values of a and ε could be chosen optimally for each N
and each performance criterion. Here, the choice indicated for a is made as follows. We
first optimise numerically the value of the ergodic characteristic limN→∞ 1

N
log ELN ,

see Section 5.2, obtained from simulations. This defines a small range of suitable
values for a. We then select in this range a value of a according to some special
criterion to be described in Section 3.3. This gives equation (5). The value ε = 1−a

2

makes the interval [A−A1

L1
, B−A1

L1
] coincide with the support of the invariant density of

the dynamic system (xn, en) (9) of Section 3.2, conditional on en = b. Also, this value
happens to be close to the optimal values obtained numerically for different N and
different performance criteria. The fact that the choice of ε ≥ 0, which corresponds
to an expansion of the initial uncertainty interval, only affects the initialisation of the
dynamic system presented in Section 3.2, has strong influence on some asymptotic
performance characteristics will be enhanced in Section 5.2. For that reason, we also
detail the behaviour of the algorithm with ε = 0.

3 Renormalisation and dynamic system

3.1 Renormalisation

The cornerstone of the study of the behaviour of the algorithm is renormalisation.
After (L) or (R) deletion, we renormalise each uncertainty interval [An, Bn] to [0, 1].
Thus introduce normalised variables in [0, 1]:

xn =
x∗ − An

Ln

, en =
En − An

Ln

, e′n =
E ′

n − An

Ln

,

and un = min(en, e′n), vn = max(en, e′n). Straightforward calculations then show that
right and left deletions respectively give:

xn+1 =

{
xn

vn
(R)

xn−un

1−un
(L)

(8)

Moreover, from the definition of En+1, we obtain

en+1 =

{
un

vn
(R)

vn−un

1−un
(L)

In the case of the GS algorithm, (1) implies that en ∈ {1 − λ, λ} , n ≥ 1, and the
algorithm can be summarized as in Table 1.

Each ordered pair (e, e′) ∈ {(1 − λ, λ), (λ, 1 − λ)} can be interpreted as a state of
the algorithm. Similarly, for the GS4 algorithm we obtain Table 2, where a, b, c, d and
a′ are defined by (5-6).
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en e′n en+1

(L) (R)
1− λ λ 1− λ λ

λ 1− λ 1− λ λ

Table 1: The GS algorithm.

en e′n en+1

(L) (R)
a a′ a c
b c a d
c b a d
d 1− a′ b d

Table 2: The GS4 algorithm.

3.2 Dynamic system representation

When the function f(.) is symmetric with respect to x∗, the decision to left or right

delete only depends on the position of x∗ with respect to En+E′n
2

. In the renormalised
form we thus obtain {

(R) if xn < en+e′n
2

,

(L) if xn ≥ en+e′n
2

.

For the GS algorithm, the updating rule (8) simply becomes

xn+1 =

{
(1 + λ)xn if xn < 1

2
,

(1 + λ)xn − λ if xn ≥ 1
2
,

which defines a dynamic system. Its ergodic behaviour was studied in [10], and it was
shown in [6] that this ergodic behaviour is the same when f(.) is only locally symmetric
at x∗.

For GS4, the updating rule is

(xn+1, en+1) =





(xn

a′ , c) if en = a and xn < a+a′
2

,

(xn−a
1−a

, a) if en = a and xn ≥ a+a′
2

,

(xn

c
, d) if (en = b or en = c) and xn < b+c

2
,

(xn−b
c

, a) if (en = b or en = c) and xn ≥ b+c
2

,

(xn

d
, d) if en = d and xn < 1− a+a′

2
,

(xn−(1−a′)
a′ , b) if en = d and xn ≥ 1− a+a′

2
.

(9)

Due to the symmetry of the possible values of en in [0, 1] and the symmetry of the
possible choices of e′n, see Table 2 and (6), the dynamic system can be simplified as
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follows. Define for n ≥ 2

(yn, gn) =

{
(xn, en) if en = a or en = b ,
(1− xn, 1− en) if en = c or en = d .

Since the rate of convergence of the algorithm is the same for the initial values x1 and
1− x1, we define

(y1, g1) =

{
(x1, b) if x1 < 1

2
,

(1− x1, b) if x1 ≥ 1
2
,

so that y1 ≤ 1
2
. Then the new system (yn, gn) obeys the simplified updating rule:

(yn+1, gn+1) =





(1− yn

a′ , b) if gn = a and yn < a+a′
2

,

(yn−a
1−a

, a) if gn = a and yn ≥ a+a′
2

,

(1− yn

c
, a) if gn = b and yn < 1

2
,

(yn−b
c

, a) if gn = b and yn ≥ 1
2
.

(10)

The price for this simplification is that knowing (yn, gn) we do not know whether
(xn, en) equals (yn, gn), (1−yn, gn), (yn, 1− gn) or (1−yn, 1− gn). However, this has no
consequence on the calculation of the performance characteristics presented in Section
4.1. In order to obtain a one-dimensional dynamic system on [0, 1], we now introduce

{
zn = yn

2
if gn = a ,

zn = 1+yn

2
if gn = b ,

which gives

zn+1 = T (zn) =





1− zn

a′ if zn < a+a′
4

,
2zn−a
2(1−a)

if a+a′
4
≤ zn < 1

2
,

1
2
− 2zn−1

2c
if 1

2
≤ zn < 3

4
,

2zn−1−b
2c

if 3
4
≤ zn .

(11)

The transformation T (.) is presented on Figure 2. Note that the convention used to
define the mapping T (.) at 1/2 is arbitrary since 1/2 can be reached only if the process
is initialised at x∗ = A1 or B1, which is impossible if ε > 0.

POSSIBLE LOCATION OF FIGURE 2

In order to be able to base our study of the performances the GS4 algorithm on
that of the dynamic system (11), we need to know the convergence rate (2) obtained
at each iteration of (11). This is given by:

rn =





a′ if zn < a+a′
4

,

1− a if a+a′
4
≤ zn < 1

2
,

c if 1
2
≤ zn .

(12)

Note that rn = 1
|T ′(zn)| , that is rn corresponds to the inverse of the modulus of the slopes

of the piecewise linear mapping T (.) (a term which appears in the Perron-Frobenius
equation in Section 5.1).
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3.3 Markov-chain representation

Consider the collection A of all points mentioned in the right-hand side of (11), that
is A = {0, a+a′

4
, 1

2
, 3

4
, 1} and define S∞ = ∪∞n=0T

n(A), where T n(A) = {T n(z), z ∈ A}.
Straightforward calculations, using computer algebra, show that when a is chosen as
indicated in Section 2, S∞ is finite and given by S∞ = {α0, α1, . . . , α12}, with

α0 = 0 , α1 =
a

4
' 0.04853 , α2 =

a3

2
− 2a2 +

9

4
a− 1

4
' 0.11506 ,

α3 = −a2

4
+

3

4
a ' 0.13617 , α4 =

a3

2
− 3

2
a2 +

5

4
a ' 0.18978 , α5 =

1

4
,

α6 =
1

4
+

a

4
' 0.29853 , α7 =

1

2
, α8 =

a3

2
− a2 +

3

4
a +

1

2
' 0.61156 ,

α9 =
a2

2
− a

2
+

3

4
' 0.67178 , α10 =

3

4
, α11 =

a3

2
− a2 +

3

4
a +

3

4
' 0.86156 , α12 = 1 .

The set S∞ defines a partition of [0, 1] into 12 intervals Ii = [αi−1, αi], i = 1, . . . , 12.
The points αi are presented in Figure 2.

Let us take a Bayesian viewpoint, and assume that z1 has a probability density φ1
z(.)

on [0, 1], such that φ1
z(z) is constant on each interval Ii, i = 1, . . . , 12. In particular,

the GS4 algorithm presented in Section 2 gives, when x∗ is uniformly distributed on
[A,B]:

e1 = b , so that φ1
z(z) = 0 , z ∈ [0,

1

2
] = ∪7

i=1Ii ,

ε =
1− a

2
, so that φ1

z(z) = 0 , z ∈ I8 .

Moreover, φ1
z(z) = 0, z ∈ I11 ∪ I12 since y1 ≤ 1

2
by definition. The density induced on

I9 and I10 is thus

φ1
z(z) =

1

α10 − α8

= 8− 4a ' 7.22353 , z ∈ I9 ∪ I10 .

Similarly, one obtains for ε = 0

φ1
z(z) = 4 , z ∈

[
1

2
,
3

4

]
= I8 ∪ I9 ∪ I10 .

The density of zn then remains constant on each interval Ii. Let π
(n)
i denote the

probability Pr(zn ∈ Ii). The interval Ii, i = 1, . . . , 12, can be interpreted as the ith

state Si of a finite Markov chain, with π
(n)
i the probability to be in state Si at iteration

n. The transition probability πij from state Si to state Sj is simply given by:

πij =





|Ij |∑
k∈Ωi

|Ik| if j ∈ Ωi ,

0 otherwise ,
(13)
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where |Ik| is the length of the interval Ik and

Ωi = {j|Ij ⊆ T (Ii)} . (14)

Let P denote the transition matrix with elements πij, i, j = 1, . . . , 12, it is given by

π1,12 = 1 , π2,10 = −2

5
a3 +

2

5
a2 +

2

5
, π2,11 =

2

5
a3 − 2

5
a2 +

3

5
, π3,9 = 1 ,

π4,2 = 1 , π5,3 = a3 − 3a2 + 2a , π5,4 = −a3 + 3a2 − 2a + 1 , π6,5 = 1 ,

π7,6 = a , π7,7 = 1− a , π8,7 = 1 , π9,5 = −2a3 + 4a2 − 3a + 1 ,

π9,6 = 2a3 − 4a2 + 3a , π10,2 = −a3 + 2a2 − a

2
+

1

2
, π10,3 = a2 − 2a +

1

2
,

π10,4 = a3 − 3a2 +
5

2
a , π11,2 = −2a3 + 4a2 + a , π11,3 = 2a2 − 5a + 1 ,

π11,4 = 2a3 − 8a2 + 8a− 1 , π11,5 = 2a2 − 4a + 1 , π12,6 = a , π12,7 = 1− a ,

the other elements being equal to 0. This gives

P '




0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0.412 0.588 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0.283 0.717 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0.194 0.806 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0.554 0.446 0 0 0 0 0 0
0 0.471 0.149 0.380 0 0 0 0 0 0 0 0
0 0.330 0.105 0.266 0.299 0 0 0 0 0 0 0
0 0 0 0 0 0.194 0.806 0 0 0 0 0




.

(15)

The initial distribution, given by π
(1)
i , i = 1, . . . , 12, is that induced on the states by

the prior distribution of x∗, and depends on the choice of ε. For ε = 1−a
2

, it is

π(1) = (0, 0, 0, 0, 0, 0, 0, 0,−2a3 + 6a2 − 4a + 1, 2a3 − 6a2 + 4a, 0, 0)T

' (0, 0, 0, 0, 0, 0, 0, 0, 0.4350, 0.5650, 0, 0)T ,

while for ε = 0 it is

π(1) = (0, 0, 0, 0, 0, 0, 0, 2a3 − 4a2 + 3a,−2a3 + 6a2 − 5a + 1,−2a2 + 2a, 0, 0)T

' (0, 0, 0, 0, 0, 0, 0, 0.4462, 0.2409, 0.3129, 0, 0)T .

This Markov-chain representation will be used in Sections 5.2 and 5.3 in the ergodic
analysis, and in Section 4.2 to obtain closed-form expressions for certain finite sample
performance characteristics of the algorithm.

9



4 Finite sample behaviour of the GS4 algorithm

When the function f(.) is symmetric with respect to x∗, the behaviour of the algorithm
only depends on the location of x∗ in [A,B]. When f(.) is not symmetric around x∗,
the behaviour also depends on the shape of f(.). However, for any fixed f(.), we can
write f(x) = f̃(x−x∗), and consider x∗ as a location parameter. The behaviour of the
algorithm for a fixed f̃(.) then only depends on x∗. Various performance characteristics
are introduced in Section 4.1. Section 4.2 is devoted to functions symmetric around x∗,
whereas in Section 4.3 robustness with respect to non-symmetry is considered through
the construction of worst-case functions f̃(.).

4.1 Performance characteristics

We shall consider the following performance criteria, which are functions of ε and N :

lELN = log ELN = log Ex∗{LN(x∗)} ,

lL1−α
N = log L1−α

N = log inf{t|Pr(LN(x∗) ≥ t) < α} ,

PGS
N = Pr{LN(x∗) < L0λ

N−1} , P F
N = Pr{LN(x∗) <

L0

FN+1

} ,

where x∗ is assumed uniformly distributed on [A, B]. The criteria PGS
N and P F

N respec-
tively correspond to the probability that the GS4 algorithm has a faster convergence
(in terms of LN(x∗)) than the GS and the Fibonacci algorithms. We shall also consider
the worst-case performance criterion

lMLN = log MLN = log max
x∗∈[A,B]

{LN(x∗)} ,

and the following variants of lELN :

lELγ
N = log Ex∗{Lγ

n(x∗)} , γ > 0 , (16)

ElLN = Ex∗{log LN(x∗)} .

Note that ELN and MLN are more classical criteria than ElLN for characterizing the
precision of the localisation of x∗.

From (12), a reduction rate Ri is associated with each state Si. Now, Ri is the
inverse of the modulus of the slope of the transformation T (.) on the interval Ii,

Ri =
|Ii|∑

j∈Ωi
|Ij| , (17)

with Ωi defined by (14). The vector R of rates associated with the twelve states is thus

R = (a′, a′, a′, 1− a, 1− a, 1− a, 1− a, c, c, c, c, c)T . (18)
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4.2 Finite sample behaviour of GS4 when f(.) is symmetric

From the values of the rates Ri (18), we can easily compute the analytical expressions
of ElLN and lELγ

N for any γ > 0.

Theorem 1 For the GS4 algorithm with initial distribution π(1) = (π
(1)
1 , . . . , π

(1)
12 )T for

the states Si, i = 1, . . . , 12, we have when f(.) is symmetric with respect to x∗:

∀γ > 0 , lELγ
N = γ log L0 + log pT

γ RN−2
γ qγ , (19)

with

(pγ)i = π
(1)
i |Ii|γ , (qγ)i =

Rγ
i

|Ii|γ , (Rγ)ij = (πij)
1+γ , (20)

and
ElLN = log L0 + π(1)T QN−2l , (21)

with

QN−2 =
N−2∑

k=0

P k , l = (log R1, . . . , log R12)
T . (22)

Proof.
First note that LN(x∗) = L0Ri1Ri2 . . . RiN−1

, where i1, . . . , iN−1 denotes the se-
quence of states visited by z1, . . . , zN−1, which is function of x∗. The probability of
visiting this particular sequence of states is

Pr(z1 ∈ Ii1 , z2 ∈ Ii2 , . . . , zN−1 ∈ IiN−1
) = π

(1)
i1 πi1i2 . . . πiN−2iN−1

.

We thus have

lELγ
N = log


Lγ

0

∑

i1,...,iN−1

π
(1)
i1 πi1i2 . . . πiN−2iN−1

(Ri1Ri2 . . . RiN−1
)γ


 . (23)

From (13) and (17), we have

Rik =
πikik+1

|Iik |
|Iik+1

| ,∀ik+1 ∈ Ωik , (24)

and substituting back in (23) from k = 1 to k = N − 2 we obtain

lELγ
N = log


Lγ

0

∑

i1,...,iN−1

π
(1)
i1 |Ii1|γ(πi1i2 . . . πiN−2iN−1

)1+γ
Rγ

iN−1

|IiN−1
|γ


 ,

which can be written as (19).
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Using similar arguments, ElLN = Ex∗{log LN(x∗)} can be written as

ElLN =
∑

i1,...,iN−1

π
(1)
i1 πi1i2 . . . πiN−2iN−1

log(L0Ri1Ri2 . . . RiN−1
) (25)

= log L0 +
∑

i1

π
(1)
i1 log Ri1 +

N−1∑

k=2

∑

i1,...,ik

π
(1)
i1 πi1i2 . . . πik−1ik log Rik

= log L0 + π(1)T l +
N−1∑

k=2

π(1)T P k−1l ,

which gives the result (21).

The expression for lMLN can be computed from the determination of the worst
cases. The two choices ε = 1−a

2
and ε = 0 have to be considered separately.

Case a: ε = 1−a
2

The initial probabilities π
(1)
1 , π

(1)
7 , π

(1)
8 and π

(1)
12 are equal to zero, so

that, from the structure of the Markov chain,

π
(k)
1 = π

(k)
7 = π

(k)
8 = π

(k)
12 = 0 , ∀k ≥ 1 .

We can thus consider a reduced Markov chain with eight states,

S ′1 = S2 , S ′2 = S3 , S ′3 = S4 , S ′4 = S5 , S ′5 = S6 , S ′6 = S9 , S ′7 = S10 , S ′8 = S11 , (26)

and the associated eight intervals I ′i. Its transition probability matrix P ′ is given by
the corresponding submatrix of P . We also define the adjacency matrix for the states
S ′i, i = 1, . . . , 8 as

P̃
′
ij = π̃′ij =

{
1 if P ′

ij > 0 ,
0 otherwise ,

(27)

that is P̃
′
ij = 1 if and only if state S ′j is reachable in one step from state S ′i. The

corresponding transition graph is presented on Figure 3.

POSSIBLE LOCATION OF FIGURE 3

Theorem 2 For the GS4 algorithm with ε = 1−a
2

we have when f(.) is symmetric with
respect to x∗:

∀N ≥ 3 , lMLN = (2m + 1) log(1− a) + m log a′ + m log c + lk ,

where k = (N − 3)[mod 4], m = N−3−k
4

and

lk =





0 if k = 0 ,
log(1− a) if k = 1 ,
2 log(1− a) if k = 2 ,
2 log(1− a) + log a′ if k = 3 .

12



Proof.
One can easily check that there are just two cycles which give the same asymptotic

worst rate, namely:

S ′4 −→ S ′3 −→ S ′1 −→ S ′8 −→ S ′4 −→ . . .

S ′4 −→ S ′2 −→ S ′6 −→ S ′5 −→ S ′4 −→ . . .

with rate a′c(1− a)2 for 4 iterations.
The initial distribution is concentrated on I ′6 and I ′7, i.e. the initial state is S ′6 or

S ′7. Starting at S ′6, where the rate is c, we go in one iteration to S ′4 or S ′5, where the
rate is 1 − a. In the next iteration we then respectively enter one of the worst cycles
described above, or go first from S ′5 to S ′4 and then enter one of the worst cycles. The
later case gives the worst case.

Starting at S ′7, where the rate is c, we first go either to S ′1 or S ′2, which belong to
the cycles above and have rate a′.

The worst path thus starts at S ′6:

S ′6 −→ S ′5 −→ S ′4 −→ . . . S ′4 −→ S ′3 −→ S ′1 −→ S ′8 ,

and stops at S ′4, S
′
3, S

′
7 or S ′8 depending on the value of N . Taking into account that the

rate r1 corresponding to the initial expansion of the interval is 1
c
, we have the stated

result.

Corollary 1 For the GS4 algorithm with ε = 1−a
2

and for functions symmetric with
respect to x∗, we have:

∀N ≥ 38 , ∀x∗ ∈ [A,B] , LN(x∗) < L0λ
N−1

∀N ≥ 42 , ∀x∗ ∈ [A,B] , LN(x∗) < L0

FN+1

that is the GS4 algorithm performs better than the GS (respectively Fibonacci) algorithm
for any N ≥ 38 (respectively 42) and any x∗ in [A,B].

There are only two values for x∗ that make the algorithm stay in the worst-case
path forever. They can be determined as follows. One can check that the point

ẑ = − 2

31
a3 − 3

31
a2 +

19

31
a +

3

31
' 0.21163

is the only point in I ′4 such that T 4(ẑ) = ẑ and T (ẑ) ∈ I ′3, T 2(ẑ) ∈ I ′1 and T 3(ẑ) ∈ I ′8.
With ẑ is associated a unique point z1 in I ′6 such that T (z1) ∈ I ′5 and T 2(z1) = ẑ. It
is given by

z1 =
7

31
a3 − 5

31
a2 − 9

62
a +

41

62
' 0.62869 .

To z1 correspond two possible values for x∗, given by x∗ = x1L1 + A1, with L1 =
(2− a)(B − A), A1 = A− 1−a

2
(B − A) and x1 = 2z1 − 1 or x1 = 2− 2z1, that is

x∗ ' A + 0.061843(B − A) , or x∗ ' A + 0.938157(B − A) .

13



Case b: ε = 0 When ε = 0, we need to consider all states Si, i = 1, . . . , 12. The
worst cycle, corresponding to x∗ = A or x∗ = B, is then

S7 −→ S7 . . .

with rate 1− a for 1 iteration. We then obtain the following property.

Theorem 3 For the GS4 algorithm with ε = 0 and for functions symmetric with
respect to x∗, we have:

∀N ≥ 2 , lMLN = log c + (N − 2) log(1− a) .

Proof.
The algorithm is initialised in S8 or S9 or S10. The worst path is

S8 −→ S7 −→ . . . −→ S7

which gives the result.

The criteria lL1−α
N , PGS

N and P F
N are difficult to compute analytically, but can be

evaluated with any arbitrary precision for any reasonable N . We simply need to com-
pute the value of LN and the probability π

(1)
i1 πi1i2 . . . πiN−2iN−1

associated with any
sequence of states Si1 , Si2 , . . . , SiN−1

. Note that from Corollary 1, PGS
N = 1, N ≥ 38

and P F
N = 1, N ≥ 42 when ε = 1−a

2
.

Table 3 presents the numerical performances of the GS4 algorithm with ε = 1−a
2

with respect to all criteria above for 1 ≤ N ≤ 30. Note the expansion of the initial
interval, that is L1 > L0.

Tables 4 presents the performances achieved when ε = 0. The comparison with
Table 3 stresses the importance of expanding the initial interval for the finite sam-
ple behaviour. The fact that this expansion is also important asymptotically will be
demonstrated in Section 5.3.

Table 5 presents the value of N required for the corresponding characteristic to reach
the precision indicated. For instance, the Fibonacci algorithm requires 30 function
evaluations to reduce the length of the initial interval by a factor 106, while GS4 with
ε = 1−a

2
requires respectively 25 and 28 evaluations to achieve the same precision, on

the average and with probability 0.99.
Figure 4 gives the evolution of some performance characteristics as function of N

for GS4.

POSSIBLE LOCATION OF FIGURE 4
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4.3 Robustness with respect to non symmetry

We consider the case where f(.) is only locally symmetric around x∗, that is

C|x− x∗|β −D|x− x∗|β+ω ≤ |f(x)− f(x∗)| ≤ C|x− x∗|β + D|x− x∗|β+ω , (28)

with β > 0, ω > 0, C > 0, D ≥ 0. Since the algorithm only uses function comparisons,
f(.) can be scaled down so that we can assume that C = 1.

Figure 5 presents the graph of the functions f0.5(x− x∗) and f2(x− x∗), with

fD(z) =

{
4

27D2 if z ≤ − 2
3D

z2 + Dz3 if − 2
3D

< z ,

which can be considered as the worst uniextremal function in the class above with
respect to the symmetry condition, for a given value D, when β = 2, ω = 1. The
functions fD(.) are constant for x ≤ x̄ = − 2

3D
, however, since we delete [An, Un] when

f(Un) ≥ f(Vn) this has no effect on the behaviour of the algorithm.

POSSIBLE LOCATION OF FIGURE 5

Numerical simulations with x∗ uniformly distributed in [A,B] were carried out, with
the non-symmetry parameter D varying from 0 to 10. Figure 6 presents the evolution
of the empirical values of the performance characteristics EL30 = Ex∗{L30(x

∗)} and
ML30 = maxx∗{L30(x

∗)} as functions of D for the GS4 algorithm with ε = 1−a
2

.
Note that EL30 remains much smaller than 1

F31
even for functions quite non-symmetric

with respect to x∗. Note in particular from Figure 5 that fD(.) is already very non-

symmetric when D = 2. The value of ML30 jumps from ML
(1)
30 ' 7.366 10−7 to

ML
(2)
30 = 1−a

a′ ML
(1)
30 ' 1.693 10−6 at D ' 1.35. This jump corresponds to replacing one

transition with rate a′ by another one with rate 1 − a in the worst path through the
graph presented in Figure 3.

Figure 7 presents the evolution of the empirical probability P F
N as a function of D

and N . Again, the performances of the GS4 algorithm remain fairly stable while non
symmetry increases.

POSSIBLE LOCATION OF FIGURE 6

POSSIBLE LOCATION OF FIGURE 7

Throughout the rest of the paper the function f(.) will be assumed symmetric with
respect to x∗.

5 Asymptotic behaviour of GS4

5.1 Invariant measure

The mapping T (.) (11) is expanding, see Figure 2, which implies the existence of a T -
invariant measure µz(.), absolutely continuous with respect to the Lebesgue measure

15



(see [1], p. 210). Its density, denoted in what follows by φz(.), can be normalised and
considered as a probability density, that is

∫ 1
0 φz(z)dz = 1. It satisfies the Perron-

Frobenius equation:

φz(z) =
∑

yj |T (yj)=z

1

|T ′(yj)|φz(yj) . (29)

Since T (.) is piecewise linear, and in view of the definition of S∞, φz(.) is piecewise
constant on the intervals Ii: φz(z) = φ̄i, z ∈ Ii, i = 1, . . . , 12. Equation (29) then
reduces to a linear equation φ̄ = Mφ̄, with φ̄ = (φ̄1, . . . , φ̄12)

T , and

Mij = πji
|Ij|
|Ii| ,

which is the reduction rate from state Sj to state Si, see (24). The equation φ̄ = Mφ̄
thus gives

φ̄i|Ii| =
12∑

j=1

πjiφ̄j|Ij| ,

or equivalently
π̄ = P T π̄ ,

with π̄i = φ̄i|Ii|. This means that π̄ is the invariant distribution for the Markov chain
with matrix P , given by the normalised eigenvector associated with the eigenvalue 1
for the matrix P T . Ergodicity of T (.) follows from the existence of a single absorbing
class for the Markov chain consisting of states {2, 3, 4, 5, 6, 9, 10, 11}. This distribution
π̄ is given in Table 6.

5.2 Asymptotic performance characteristics

We shall compute now the asymptotic values of the performance characteristics of
Section 4.1. In particular, we shall see that limN→∞ 1

N
ElLN is not sensitive to the choice

of ε in the GS4 algorithm, whereas limN→∞ 1
N

lELN and limN→∞ 1
N

lMLN are. This
reinforces our view that ElLN is not a suitable criterion for evaluating the performances
of the algorithm.

5.2.1 Lyapunov exponent and ergodic log-rate

The Lyapunov exponent of the dynamic system (11) is defined by

Λ = lim
n→∞

1

n

n∑

k=1

log |T ′(zk)| , (30)

if this limit exists and is the same for almost all z1. Birkhoff’s ergodic Theorem, see
[2] p. 44, implies that Λ exists and is given by

Λ = −
12∑

i=1

π̄i log Ri ' 0.63006 , (31)
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where π̄i and Ri respectively correspond to the invariant probability and reduction rate
for state Si, given by Table 6 and (18). Since |T ′(zk)| = 1

Ri
for zk ∈ Ii, the expression

for Λ can also be written as

Λ = − lim
n→∞

1

n

n∑

k=1

log rk = − 1

n
lim

n→∞ log Ln(x∗) .

This last limit is called the ergodic log-rate in [7], and it is the same for almost all x∗

and any fixed ε ≥ 0. This is a consequence of the piecewise linearity of the mapping
T (.), see [7]. The next theorem relates Λ and the quantity

H = − lim
N→∞

1

N
Ex∗{log LN(x∗)} . (32)

Theorem 4 Assume that x∗ has a prior density p(x∗) on [A,B] absolutely continuous
with respect to the Lebesgue measure. Then for the GS4 algorithm Λ = H ' 0.63006.

Proof.
From the definition of the algorithm:

L0(a
′)N−1 ≤ LN(x∗) ≤ L0(1− a)N−1 , ∀N ≥ 2 , ∀x∗ ∈ [A,B] ,

where a and a′ are defined in Section 2. This gives

− log L0

N − 1
− log(1− a) ≤ − log LN(x∗)

N − 1
≤ − log L0

N − 1
− log a′ .

Lebesgue’s Theorem on dominated convergence then implies

− lim
N→∞

1

N
Ex∗{log LN(x∗)} = − lim

N→∞

∫ B

A

log LN(x∗)
N

p(x∗)dx∗

=
∫ B

A
− lim

N→∞

(
log LN(x∗)

N

)
p(x∗)dx∗ = Λ .

In the case where x∗ has a prior distribution uniform on [A,B], the equality H = Λ
could also have been obtained through the expression given in Theorem 1 for ElLN .
Indeed,

ElLN

N
=

log L0

N
+

(π(1))T QN−2l

N
,

with QN−2 and l given by (22). Now, (π(1))T P kl tends to π̄T l when k tends to infinity,
so that

H = − lim
N→∞

ElLN

N
= −π̄T l = Λ .

The next result shows that the quantiles lL1−α
N behave asymptotically as ElLN .
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Theorem 5 Assume that x∗ has a prior density p(x∗) on [A,B] absolutely continuous
with respect to the Lebesgue measure. Then for any fixed α, 0 < α < 1, one has

lim
N→∞

1

N
lL1−α

N = −H , (33)

where H is defined by (32).

Proof.
The asymptotic relation (30) implies that ∀δ, γ > 0,∃N0(δ, γ) such that

∀N ≥ N0(δ, γ) , P r(| 1
N

log LN(x∗) + Λ| ≥ δ) < γ . (34)

Let t′ be any number larger than −Λ. We can show that 1
N

lL1−α
N ≤ t′ for N large

enough. Indeed, take γ = α and δ = t′ + Λ > 0. Then (34) implies

∀N ≥ N0(δ, γ) , P r(
1

N
log LN(x∗) ≥ t′) < α ,

and thus

∀N ≥ N0(δ, γ) ,
1

N
lL1−α

N = inf{t|Pr(
1

N
log LN(x∗) ≥ t) < α} ≤ t′ .

Similar arguments show that ∀t′ < −Λ, 1
N

lL1−α
N ≥ t′ for N large enough. We thus

obtain for any δ > 0:

lim sup
N→∞

1

N
lL1−α

N ≤ −Λ + δ ,

and

lim inf
N→∞

1

N
lL1−α

N ≥ −Λ− δ .

This implies

lim
N→∞

1

N
lL1−α

N = −Λ ,

which together with Theorem 4 gives the result (33).

Corollary 2 Assume that x∗ has a prior density p(x∗) on [A,B] absolutely continuous
with respect to the Lebesgue measure. Then

lim
N→∞

PGS
N = lim

N→∞
P F

N = 1 .

Proof.
We showed in the proof of Theorem 5 that ∀δ, γ > 0,∃N0(δ, γ) such that

∀N > N0(δ, γ) , P r(
1

N
log LN(x∗) ≥ −Λ + δ) < γ . (35)
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Therefore, taking δ = −Λ + log λ > 0.148 one obtains

∀N > N0(δ, γ) , ∀γ > 0 , 1− PGS
N = Pr(

1

N
log LN(x∗) >

N − 1

N
log λ)

< Pr(
1

N
log LN(x∗) > log λ) < γ ,

so that limN→∞ PGS
N = 1.

Now, since
(

1
FN+1

)1/N
converges to λ [5], we have

∀ω , 0 < ω < λ− exp(Λ) , ∃N1 such that ∀N ≥ N1 ,

(
L0

FN+1

)1/N

> λ− ω .

One then obtains for N ≥ N1:

1− P F
N = Pr(

1

N
log LN(x∗) >

1

N
log

(
L0

FN+1

)
)

≤ Pr(
1

N
log LN(x∗) > log(λ− ω)) .

Taking δ = −Λ + log(λ− ω) > 0 in (35) then gives the result limN→∞ P F
N = 1.

5.2.2 Asymptotic behaviour of the expected length

As we shall see below, the asymptotic expression limN→∞ 1
N

lELγ
N , with lELγ

N given
by (16) depends on the choice of ε, whereas it was not the case for the criterion
limN→∞ 1

N
ElLN . For that reason, we consider the two cases ε = 1−a

2
and ε = 0

separately.

Case a: ε = 1−a
2

We have the following property.

Theorem 6 Assume that x∗ has a uniform prior distribution on [A,B] and that ε =
1−a
2

. Then for any γ > 0, the algorithm GS4 is such that

lim
N→∞

1

N
lELγ

N = log λmax(R
′
γ) , (36)

where λmax(M ) denotes the maximal eigenvalue of the matrix M and where

(R′
γ)ij = (P ′

ij)
1+γ , (37)

with P ′ the submatrix of P (15) associated with the eight states S ′i (26). In particular
for γ = 1

lim
N→∞

1

N
log Ex∗{LN(x∗)} = log µ ' −0.61273 , (38)

where µ ' 0.54187 is the largest positive root of the equation

4t6 − 8a2t4 + (−24a3 + 54a2 − 42a + 6)t3 + (−12a3 + 18a2 − 14a + 2)t2

+(52a3 − 102a2 + 90a− 14)t + 68a3 − 125a2 + 99a− 15 = 0 .
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Proof.
From Theorem 1, we have

lELγ
N = γ log L0 + log(pT

γ RN−2
γ qγ) ,

with pγ, qγ and Rγ given by (20). Since ε = 1−a
2

, (pγ)1 = (pγ)7 = (pγ)8 = (pγ)12 = 0,
and from the structure of the matrix P we have

lELγ
N = γ log L0 + log((p′γ)

T (R′
γ)

N−2q′γ) ,

where

p′γ =
(
(pγ)2, (pγ)3, (pγ)4, (pγ)5, (pγ)6, (pγ)9, (pγ)10, (pγ)11

)T
,

q′γ =
(
(qγ)2, (qγ)3, (qγ)4, (qγ)5, (qγ)6, (qγ)9, (qγ)10, (qγ)11

)T
,

and R′
γ is given by (37). The matrix R′

γ satisfies the strong mixing condition, that is

((R′
γ)

n)ij > 0 , ∀i, j = 1, . . . , 8 ,

for any n ≥ 8. Perron Frobenius Theorem, see [2], Theorem 7.25 p.205, gives

lim
N→∞

λ−(N−2)
max (p′γ)

T (R′
γ)

N−2q′γ = ((p′γ)
T uγ)((q

′
γ)

T vγ) ,

where λmax is the (simple) maximum eigenvalue of R′
γ and uγ is the associated eigenvec-

tor, vγ is the eigenvector of (R′
γ)

T associated with the same eigenvalue λmax. Moreover,
uγ and vγ have strictly positive elements and uT

γ vγ = 1. This implies

lim
N→∞

1

N
log

(
λ−(N−2)

max (p′γ)
T (R′

γ)
N−2q′γ

)
= 0 ,

so that

lim
N→∞

1

N
log

(
(p′γ)

T (R′
γ)

N−2q′γ
)

= log λmax ,

which gives (36).
In particular when γ = 1, elementary but tedious algebraic calculations give (38).

Case b: ε = 0 In that case we can only obtain a bound on lim infN→∞ 1
N

log Ex∗{LN(x∗)}.
Theorem 7 Assume that x∗ has a uniform distribution on [A,B] and let ε = 0. Then,
for any γ > 0 and N > 3 the GS4 algorithm is such that

lELγ
N

N − 2
≥ (1 + γ) log(1− a) +

γ log L0

N − 2
+

1

N − 2
log

(1− c)1+γ

(1− a)2
, (39)

and therefore

lim inf
N→∞

1

N
lELγ

N ≥ (1 + γ) log(1− a) .

20



Proof.
From Theorem 1, we have

lELγ
N = γ log L0 + log(pT

γ RN−2
γ qγ) ,

with pγ, qγ and Rγ given by (20). When ε = 0, (pγ)1 = (pγ)12 = 0, and due to the
structure of the matrix P we have

lELγ
N = γ log L0 + log((p′′γ)

T (R′′
γ)

N−2q′′γ) ,

where

p′′γ =
(
(pγ)2, (pγ)3, . . . , (pγ)11

)T
, q′′γ =

(
(qγ)2, (qγ)3, . . . , (qγ)11

)T
,

and R′′
γ is the submatrix of Rγ corresponding to the states S2, . . . , S11. We can reorder

the states and rearrange S7 and S8 to the last positions, so as to obtain the following
representation for R′′

γ:

R′′
γ =

(
R′

γ 0
G F

)
,

with

F =

(
(1− a)1+γ 0

1 0

)
, G =

(
0 0 0 0 a1+γ 0 0 0
0 0 0 0 0 0 0 0

)
,

which corresponds to transition probabilities (to the power 1 + γ) from states S7 and
S8. Then (R′′

γ)
N−2 takes the form

(R′′
γ)

N−2 =

(
(R′

γ)
N−2 0

GN−2 F N−2

)
,

where GN−2 is a matrix with non-negative elements. With the same rearrangement of
the states we define

(pγ)7,8 = ((pγ)7, (pγ)8)
T = (0,

(1− c)1+γ

4γ
)T ,

(qγ)7,8 = ((qγ)7, (qγ)8)
T = (4γ(1− a)γ−1, 4γ(2− 5a + 6a2 − 2a3)γ)T .

Then, since all components involved are non-negative,

lELγ
N ≥ γ log L0 + log((pγ)

T
7,8F

N−2(qγ)7,8) .

The matrix F can be decomposed into

F =

(
1 (1− a)1+γ

1 0

)−1 (
0 0
0 (1− a)1+γ

) (
1 (1− a)1+γ

1 0

)
,

which gives (39) after elementary calculations.
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When γ = 1 we thus have the following:

Corollary 3 For the GS4 algorithm with ε = 0, one has when x∗ has a prior distribu-
tion uniform on [A,B]:

lim inf
N→∞

1

N
log Ex∗{LN(x∗)} ≥ 2 log(1− a) ' −0.43163 .

Note that the bound 2 log(1 − a) of Corollary 3 implies that the performances in
terms of expected length of the uncertainty interval are significantly worse for the GS4
algorithm with ε = 0 than for the GS algorithm, for which lELN

N
= N−1

N
log λ, with

log λ ' −0.48121.

5.2.3 Asymptotic behaviour of worst-case performances

We consider now the asymptotic worst-case characteristic limN→∞ 1
N

lMLN . Again,
the two cases ε = 1−a

2
and ε = 0 must be treated separately.

Case a: ε = 1−a
2

From Theorem 2, we obtain the asymptotic expression

lim
N→∞

1

N
lMLN =

1

4
log(a(1− a)2) ,

' −0.51773 .

A crucial point here is that this value is less than log λ ' −0.48121, which corresponds
to the performance of the GS algorithm.

Case b: ε = 0 Theorem 3 now gives the asymptotic expression

lim
N→∞

1

N
lMLN = log(1− a) ,

' −0.21582

This value is now much larger that log λ. However, we still have convergence to 1 for
PGS

N and P F
N , see Corollary 2.

5.3 Partitions and entropies

Some asymptotic performance characteristics of the GS4 algorithm are closely con-
nected to various entropies of the associated dynamic system. The link is a conse-
quence of the connections between the transition probabilities of the Markov chain,
the lengths of the intervals of the partition S∞ and the rates Ri. These calculations
are really of a general nature, but are presented here specialised to the GS4 algorithm.
An important consequence is the contention that the second-order Renyi entropy is to
be preferred to Shannon entropy for a wide class of search algorithms.
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Consider the partition P1 of the interval [0, 1] defined by the intervals Ii, i =
1, . . . , 12. When applying the mapping T (.) n times we obtain another partition of
[0, 1]:

Pn = T−n(P1) = ∪12
i=1{z1 ∈ [0, 1]|zn = T n(z1) ∈ Ii} .

The join of partitions P1, . . . ,Pn is then defined as

Qn(P1) = P1 ∨ P2 ∨ . . . ∨ Pn

= {∩i1,...,inIi1,...,in , ik ∈ {1, . . . , 12} , k = 1, . . . , n} ,

which contains all intersections of elements of partitions P1, . . . ,Pn, that is

Ii1,...,in = {z1 ∈ [0, 1]|z1 ∈ Ii1 , . . . , zn ∈ Iin} .

Let µ(.) be a probability measure on Borel sets of [0, 1], P be a partition of [0, 1] and
Φ0(Qn(P), µ) be the Shannon entropy of the partition Qn(P) = P ∨ T−1(P) ∨ . . . ∨
T−n+1(P). If P = P1 then

Φ0(Qn(P1), µ) = − ∑

i1,...,in

µ(Ii1,...,in) log(µ(Ii1,...,in)) ,

Define

h0(T,P1, µ) = lim
n→∞

1

n
Φ0(Qn(P1), µ) ,

if the limit exists. The limit certainly exists if µ(·) is the invariant measure µz(·) for
the mapping T (·). The Kolmogorov, or metric, entropy of the dynamic system with
respect to the measure µz(·) is defined as:

h0(T ) = h0(T, µz) = sup
P

h0(T,P , µz) .

Since for any pair of points z1 6= z′1 there exists n such that zn = T n(z1) ∈ Iin and
z′n = T n(z′1) /∈ Iin , then Q∞(P1) = ∨∞i=1Pi consists only of singletons. Thus, from [1],
Theorem 4.6 p. 215, P1 is a generating partition and h0(T ) = h0(T,P1, µz).

From the Markov-chain representation of Section 3.3, the measure µz(Ii1,...,in) can
be written as µz(Ii1,...,in) = π̄i1πi1i2 . . . πin−1in , which, using (13) and (17), gives the
following expression for h0(T ):

h0(T ) = lim
n→∞−

1

n

∑

i1,...,in

π̄i1πi1i2 . . . πin−1in log(π̄i1πi1i2 . . . πin−1in)

= lim
n→∞−

1

n

∑

i1,...,in

π̄i1πi1i2 . . . πin−1in log(π̄i1Ri1Ri2 . . . Rin−1

|Iin |
|Ii1|

)

= lim
n→∞−

1

n

∑

i1,...,in

π̄i1πi1i2 . . . πin−1in log(L0Ri1Ri2 . . . Rin−1) .

The only difference with H = limN→∞− 1
N

ElLN , where ElLN is given by (25) for
x∗ uniformly distributed on [A,B], comes from the use of the invariant distribution
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in the definition of h0(T ). However, when ε = 1−a
2

, for any δ > 0, there exists

N0 such that |π(N0)
i − π̄i| < δπ̄i, i = 1, . . . , 12, and we can then easily prove that

h0(T ) = limN→∞− 1
N

Ex∗{log LN(x∗)}. Note that, under the less restrictive assumption
that x∗ has a prior density on [A, B] absolutely continuous with respect to the Lebesgue
measure, this also follows from Theorem 2 and the Shannon-McMillan-Breiman Theo-
rem, see [1] p. 214, which implies that h0(T ) = Λ.

In what follows we consider entropies of the dynamic system (11) based on the
following functionals on partitions:

Φγ(Qn(P1), µ) = −1

γ
log


 ∑

i1,...,in

µ1+γ(Ii1,...,in)


 , γ > 0 , (40)

Φ∗(Qn(P1)) = log |Qn(P1)| ,
where |Qn| is the number of elements in the partition Qn and µ(.) is a fixed measure
on [0, 1]. Φγ(Qn, µ) belongs to the class of Renyi entropies for the partition Qn [9].

The topological entropy for the dynamic system T (.) with respect to P1, which is
a measure of the complexity of the algorithm, is defined by

h∗(T,P1) = lim
n→∞

1

n
Φ∗(Qn(P1)) , (41)

if the limit exists, and we define the expected-cost entropy of degree γ with respect to
P1 and µ(.) as

hγ(T,P1, µ) = lim
n→∞

1

n
Φγ(Qn(P1), µ) , (42)

if the limit exists. When γ = 1, we simply call h1(T,P1, µ) the expected-cost entropy,
which can be justified from the following property.

Theorem 8 Let µ(.) be any measure with a density constant on the intervals I ′i as-
sociated with the eight states S ′i (26), and P1 be the partition defined by the intervals
Ii, i = 1, . . . , 12. Then the limit (42) exists and equals

hγ(T,P1, µ) = −1

γ
log λmax(R

′
γ) , (43)

independently of µ, where R′
γ is defined by (37).

Proof.
Let π′i = µ(I ′i), i = 1, . . . , 8. Then µ(Ii1,...,in) = π′i1π

′
i1i2

. . . π′in−1in , with π′ij the
element i, j of the submatrix P ′ of the matrix P associated with the eight states S ′i
(26). From (40) and (42), this gives the following expression for hγ(T,P1, µ):

hγ(T,P1, µ) = lim
n→∞−

1

nγ
log


 ∑

i1,...,in

(π′i1π
′
i1i2

. . . π′in−1in)1+γ


 ,

= lim
n→∞−

1

nγ
log((π′

γ)
T (R′

γ)
n−11) ,
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where 1 = (1, 1, 1, 1, 1, 1, 1, 1)T and π′
γ = ((π′1)

1+γ, . . . , (π′8)
1+γ)T . Since R′

γ is strong
mixing, see the proof of Theorem 4, we obtain the result (43). That the existence of
the limit for one measure implies the same limit for equivalent measures can also be
established from ergodic considerations.

Corollary 4 Take µ and P1 as in Theorem 8, and let x∗ be uniformly distributed on
[A,B], then for the GS4 algorithm with ε = 1−a

2
we have for any γ > 0:

hγ(T,P1, µ) = −1

γ
lim

N→∞
lELγ

N

N
.

In particular, when γ = 1

h1(T,P1, µ) = − lim
N→∞

1

N
log Ex∗{LN(x∗)} .

Note that Theorem 8 may not be valid when the support of µ(.) is not restricted to
the intervals I ′i, i = 1, . . . , 8 (e.g. when ε = 0 in the GS4 algorithm, see Theorem 7 for
a lower bound on lELγ

N).
It should be stressed that although h1 has more practical interpretation than h0 in

terms of performance characteristics, it does not seem to have been considered in the
literature on dynamic systems.

Similarly to the definition of Kolmogorov entropy we can define

hγ(T, µ) = sup
P

hγ(T,P , µ) ,

if limn→∞ 1
n
Φγ(Qn(P), µ) exists. Since P1 is a generating partition, we believe that

hγ(T, µ) = hγ(T,P1, µ), even if this point requires further investigations.

Analogous considerations for the topological entropy yield the following property.

Theorem 9 Let P1 be the partition defined by the intervals Ii, i = 1, . . . , 12. Then
the limit (41) exists for the dynamic system associated with the GS4 algorithm with
ε = 1−a

2
and equals

h∗(T,P1) = log λmax(P̃
′
) ' 0.65103 , (44)

where P̃
′

is defined by (27) and where λmax(P̃
′
) ' 1.9175 is the maximal root of

t5 − t4 − t3 − 2t2 + 2 = 0.

Proof.
The topological entropy counts the growth in the number of trajectories of the

algorithm, and is given by

h∗(T,P1) = lim
n→∞

1

n
log(number of i1, . . . , in|zi1 ∈ Ii1 , . . . , zin ∈ Iin) .
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Since ε = 1−a
2

, the intervals I1, I7, I8 and I12 are never visited and h∗(T,P1) can be
written as:

h∗(T,P1) = lim
n→∞

1

n
log


 ∑

i1,...,in

π̃′i1i2
. . . π̃′in−1in


 ,

with π̃′ij defined by (27), i, j = 1, . . . , 8. Similarly to the proof of Theorem 6, we obtain

h∗(T,P1) = lim
n→∞

1

n
log 1T (P̃

′
)n−11 ,

which give the result (44).

Note that (44) gives a lower bound for the topological entropy of the dynamic
system T (.) (11) associated with the GS4 algorithm with ε = 0.

6 Discussion and conclusions

The asymptotic performances of the GS and GS4 algorithms are summarized in Table
7.

The performances in terms of limN→∞ 1
N

lEL1−α
N are not indicated in the table since

this characteristic coincides with limN→∞ 1
N

ElLN , see Theorem 5. The fact that − log 2
is a lower bound for limN→∞ 1

N
ElLN is proved in [7], and an algorithm that achieves

this lower bound for locally symmetric functions satisfying (28) is detailed in [11].
The fact that − log 2 is a lower bound for limN→∞ 1

N
lELN then follows from Jensen’s

inequality:
log Ex∗{LN(x∗)} ≥ Ex∗{log LN(x∗)} .

A family of algorithms with performances limN→∞ 1
N

lELN arbitrarily close to the
bound − log 2 for functions symmetric with respect to x∗ is presented in [8]. However,
these algorithms are mainly of theoretical interest since their finite sample behaviour
is inferior. The bound − log 2 for limN→∞ 1

N
lMLN simply follows from

max
x∗∈[A,B]

{log LN(x∗)} ≥ Ex∗{log LN(x∗)} .

The existence of second-order algorithms achieving this bound for functions symmetric
with respect to x∗ remains an open question.

Table 7 shows that the GS4 algorithm with ε = 1−a
2

has much better asymptotic
performances than the GS algorithm. This alone is not enough, however, to give GS4
some practical interest. One should also consider Tables 4 and 5 which illustrate the
superiority of GS4 over GS for finite N . The robustness of the performances with
respect to non-symmetry of the function is illustrated by Figures 6 and 7. All these
results make GS4 a promising alternative to Golden-Section and Fibonacci algorithms.
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FIGURE CAPTIONS

Figure 1: One iteration in a second-order line search algorithm.

Figure 2: Graph of the Mapping T (.) (11). The αi’s are indicated by stars.

Figure 3 : Graph of transition for states S ′i, i = 1, . . . , 8.

Figure 4: Decimal logarithm of various performance characteristics (L0 = 1).

Figure 5: Graphs of f0.5(.) and f2(.).

Figure 6: Evolution of EL30 and ML30 as functions of D (L0 = 1).

Figure 7: Evolution of P F
N as a function of D and N .
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z T (z)

N log10(1/FN+1) log10(MLN)

log10(L
0.99
N ) log10(ELN)

x− x∗ f0.5(x− x∗) f2(x− x∗)
D EL30

D ML30 λ29 1/F31

D N P F
N
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N λN−1 1
FN+1

ELN MLN PGS
N P F

N L0.99
N

1 1.0000 1.0000 1.8059 1.8059 0.0000 0.0000 1.8059
2 0.6180 0.5000 1.0000 1.0000 0.0000 0.0000 1.0000
3 0.3820 0.3333 0.6463 0.8059 0.3506 0.0000 0.8059
4 0.2361 0.2000 0.3862 0.6494 0.3506 0.3506 0.6494
5 0.1459 0.1250 0.2117 0.5234 0.1361 0.1361 0.5234
6 9.017 10−2 7.692 10−2 0.1064 0.1835 0.3555 3.555 0.1835
7 5.573 10−2 4.762 10−2 6.076 10−2 0.1016 0.6100 0.6100 0.1016
8 3.444 10−2 2.941 10−2 3.345 10−2 8.188 10−2 0.6100 0.6100 8.188 10−2

9 2.129 10−2 1.818 10−2 1.764 10−2 6.598 10−2 0.8421 0.3823 6.598 10−2

10 1.316 10−2 1.124 10−2 9.511 10−3 2.313 10−2 0.6196 0.6196 2.313 10−2

11 8.131 10−3 6.944 10−3 5.266 10−3 1.281 10−2 0.8207 0.8207 1.281 10−2

12 5.025 10−3 4.292 10−3 2.835 10−3 1.032 10−2 0.9437 0.8207 1.032 10−2

13 3.106 10−3 2.653 10−3 1.521 10−3 8.318 10−3 0.9437 0.9437 3.618 10−3

14 1.919 10−3 1.639 10−3 8.300 10−4 2.916 10−3 0.8080 0.8080 2.004 10−3

15 1.186 10−3 1.013 10−3 4.515 10−4 1.615 10−3 0.9267 0.9267 1.615 10−3

16 7.331 10−4 6.261 10−4 2.433 10−4 1.301 10−3 0.9817 0.9817 1.301 10−3

17 4.531 10−4 3.870 10−4 1.318 10−4 1.049 10−3 0.9817 0.9817 4.562 10−4

18 2.800 10−4 2.392 10−4 7.166 10−5 3.676 10−4 0.9978 0.9134 2.526 10−4

19 1.731 10−4 1.478 10−4 3.879 10−5 2.036 10−4 0.9725 0.9725 2.036 10−4

20 1.070 10−4 9.136 10−5 2.098 10−5 1.640 10−4 0.9943 0.9943 7.136 10−5

21 6.611 10−5 5.646 10−5 1.138 10−5 1.322 10−4 0.9995 0.9943 3.952 10−5

22 4.086 10−5 3.490 10−5 6.173 10−6 4.634 10−5 0.9994 0.9994 3.184 10−5

23 2.525 10−5 2.157 10−5 3.341 10−6 2.566 10−5 0.9903 0.9903 1.116 10−5

24 1.561 10−5 1.333 10−5 1.811 10−6 2.068 10−5 0.9983 0.9983 6.182 10−6

25 9.645 10−6 8.238 10−6 9.817 10−7 1.667 10−5 0.9999 0.9999 4.982 10−6

26 5.961 10−6 5.091 10−6 5.318 10−7 5.843 10−6 1.0000 0.9999 4.015 10−6

27 3.684 10−6 3.147 10−6 2.881 10−7 3.235 10−6 1.0000 0.9967 1.407 10−6

28 2.277 10−6 1.945 10−6 1.561 10−7 2.607 10−6 0.9995 0.9995 7.793 10−7

29 1.407 10−6 1.202 10−6 8.462 10−8 2.101 10−6 1.0000 1.0000 6.280 10−7

30 8.697 10−7 7.428 10−7 4.584 10−8 7.366 10−7 1.0000 1.0000 2.202 10−7

Table 3: Performances of the GS4 algorithm with ε = 1−a
2

(L0 = 1).
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N ELN MLN PGS
N P F

N L0.99
N

1 1 1 0 0 1
2 0.5537 0.5537 0 0 0.5537
3 0.3973 0.4463 0.1941 0.1941 0.4463
4 0.2789 0.3596 0.3506 0.3506 0.3596
5 0.1943 0.2898 0.4766 0.3506 0.2898
6 0.1336 0.2336 0.4766 0.4766 0.2336
7 9.069 10−2 0.1882 0.3378 0.3378 0.1882
8 6.098 10−2 0.1517 0.4663 0.4663 0.1517
9 4.078 10−2 0.1222 0.5699 0.5699 0.1222
10 2.712 10−2 9.851 10−2 0.6734 0.5699 9.851 10−2

15 3.350 10−3 3.348 10−2 0.7209 0.7209 3.348 10−2

20 3.972 10−4 1.138 10−2 0.8173 0.8173 1.138 10−2

25 4.637 10−5 3.869 10−3 0.8830 0.8205 1.156 10−3

30 5.381 10−6 1.315 10−3 0.8838 0.8838 5.110 10−5

Table 4: Performances of the GS4 algorithm with ε = 0 (L0 = 1).

precision 10−1 10−2 10−3 10−4 10−5 10−6

λN−1 6 11 16 21 25 30
1

FN+1
6 11 16 20 25 30

ELN 7 10 14 18 22 25
MLN 8 13 18 22 26 30
L0.99

N 8 13 17 20 24 28

Table 5: Number of functions evaluations required to achieve a given precision (L0 = 1).
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π̄1 0
π̄2

1
1763

(112a3 + 4a2 − 879a + 657) ' 0.2764
π̄3

1
1763

(100a3 − 752a2 + 1293a− 106) ' 0.0666
π̄4

1
1763

(−792a3 + 2994a2 − 2977a + 769) ' 0.1691
π̄5

1
1763

(−276a3 + 242a2 + 592a + 81) ' 0.1152
π̄6

1
1763

(644a3 − 1740a2 + 1557a− 189) ' 0.0297
π̄7 0
π̄8 0
π̄9

1
1763

(100a3 − 752a2 + 1293a− 106) ' 0.0666
π̄10

1
1763

(244a3 − 495a2 − 89a + 235) ' 0.1139
π̄11

1
1763

(−132a3 + 499a2 − 790a + 422) ' 0.1625
π̄12 0

Table 6: Invariant distribution for the Markov chain.

GS GS4 (ε = 0) GS4 (ε = 1−a
2

) lower bound
limN→∞ 1

N
ElLN ' −0.48121 ' −0.63006 ' −0.63006 − log 2 ' −0.6930

limN→∞ 1
N

lELN ' −0.48121 > −0.43163∗ ' −0.61273 − log 2 ' −0.6930
limN→∞ 1

N
lMLN ' −0.48121 ' −0.21582 ' −0.51773 − log 2 ' −0.6930

Table 7: Asymptotic performance characteristics of the GS and GS4 algorithms. The
sign ∗ indicates that the bound concerns lim infN→∞ 1

N
lELN .
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