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Stochastic global optimization methods are methods for solving a global optimization prob-
lem incorporating probabilistic (stochastic) elements, either in the problem data (the objective
function, the constraints, etc.), or in the algorithm itself, or in both.

Global optimization is a very important part of applied mathematics and computer science.
The importance of global optimization is primarily related to the applied areas such as engi-
neering, computational chemistry, finance and medicine amongst many other fields. For the
state of the art in the theory and methodology of global optimization we refer to the ‘Journal
of Global Optimization’ and two volumes of the ‘Handbook of Global Optimization’ [1,2]. If
the objective function is given as a ‘black box’ computer code, the optimization problem is es-
pecially difficult. Stochastic approaches can often deal with problems of this kind much easier
and more efficiently than the deterministic algorithms.

The problem of global minimization. Consider a general minimization problem f(x)→minx∈X

with objective function f(·) and feasible region X. Let x∗ be a global minimizer of f(·); that is,
x∗ is a point in X such that f(x∗) = f∗ where f∗ = minx∈Xf(x). Global optimization problems
are usually formulated so that the structure of the feasible region X is relatively simple; this
can be done on the expense of increased complexity of the objective function.

A global minimization algorithm is a rule for constructing a sequence of points x1, x2, . . . in
X such that the sequence of record values yon = mini=1...n f(xi) approaches the minimum f∗ as
n increases. In addition to approximating the minimal value f∗, one often needs to approximate
at least one of the minimizers x∗.

Heuristics. Many stochastic optimization algorithms where randomness is involved have
been proposed heuristically. Some of these algorithms are based on analogies with natural pro-
cesses; the well-known examples are evolutionary algorithms [3] and simulated annealing [4].
Heuristic global optimization algorithms are very popular in applications, especially in dis-
crete optimization problems. Unfortunately, there is a large gap between practical efficiency of
stochastic global optimization algorithms and their theoretical rigor.

Stochastic assumptions about the objective function. In deterministic global optimization,
Lipschitz-type conditions on the objective function are heavily exploited. Much research have
been done in stochastic global optimization where stochastic assumptions about the objective
function are used in a manner similar to how the Lipschitz condition is used in deterministic
algorithms. A typical example of a stochastic assumption of this kind is the postulation that
f(·) is a realization of a certain stochastic process. This part of stochastic optimization is well
described in [5], Chapter 4 and will not be pursued in this article.

Global random search (GRS). The main research in stochastic global optimization deals
with the so-called ‘global random search’ (GRS) algorithms which involve random decisions
in the process of choosing the observation points. A general GRS algorithm assumes that a
sequence of random points x1, x2, . . . , xn is generated where for each j > 1 the point xj has
some probability distribution Pj. For each j > 2, the distribution Pj may depend on the
previous points x1, . . . , xj−1 and on the results of the objective function evaluations at these
points (the function evaluations may not be noise-free). The number of points n, 1 6 n ≤ ∞
(the stopping rule) can be either deterministic or random and may depend on the results of
function evaluation at the points x1, . . . , xn.
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Three important classes of GRS algorithms. In the algorithm which is often called ‘pure
random search’ (PRS) all the distributions Pj are the same (that is, Pj = P for all j) and
the points xj are independent. In Markovian algorithms the distribution Pj depends only on
the previous point xj−1 and f(xj−1), the objective function value at xj−1. In the so-called
population-based algorithms the distributions Pj are updated only after a certain number of
points with previous distribution have been generated.

Attractive features of GRS. GRS algorithms are very popular in both theory and practice.
Their popularity is owed to several attractive features that many global random search algo-
rithms share: (a) the structure of GRS algorithms is usually simple; (b) these algorithms are
often rather insensitive to the irregularity of the objective function behaviour, to the shape
of the feasible region, to the presence of noise in the objective function evaluations, and even
to the growth of dimensionality; (c) it is very easy to construct GRS algorithms guaranteeing
theoretical convergence.

Drawbacks of GRS. Firstly, the practical efficiency of the algorithms often depends on a
number of parameters, but the problem of the choice of these parameters frequently has little
relevance to the theoretical results concerning the convergence of the algorithms. Secondly,
for many global random search algorithms an analysis on good parameter values is lacking
or just impossible. Thirdly, the convergence rate can be painfully slow, see discussion below.
Improving the convergence rate (or efficiency of the algorithms) is a problem that much research
in the theory of global random search is devoted to.

Main principles of GRS. A very large number of specific global random search algorithms
exist, but only a few main principles form their basis. These principles can be summarized
as follows: (i) random sampling of points at which f(·) is evaluated, (ii) random covering
of the space, (iii) combination with local optimization techniques, (iv) the use of different
heuristics including cluster-analysis techniques to avoid clumping of points around a particular
local minima, (v) Markovian construction of algorithms, (vi) more frequent selection of new
trial points in the vicinity of ‘good’ previous points, (vii) use of statistical inference, and (viii)
decrease of randomness in the selection rules for the trial points. In constructing a particular
global random search method, one usually incorporates several of these principles, see [5] where
all these principles are carefully considered.

Convergence of GRS. To establish the convergence of a particular GRS algorithm, the
classical Borel-Cantelli theorem is usually used. The corresponding result can be formu-
lated as follows, see [5], Theorem 2.1. Assume that X ⊆ Rd with 0 < vol(X) < ∞ and∑∞

j=1 inf Pj(B(x, ε)) = ∞ for all x ∈ X and ε > 0, where B(x, ε) = {y∈X : ||y−x||2 ≤ ε}
and the infimum is taken over all possible locations of previous points x1, . . . , xj−1 and the
results of the objective function evaluations at these points. Then with probability one, the
sequence of points x1, x2, . . . falls infinitely often into any fixed neighbourhood of any global
minimizer.

In practice, a very popular rule for selecting the sequence of probability measures Pj is
Pj = αjP0+(1−αj)Qj, where 0 ≤ αj 6 1, P0 is the uniform distribution on X and Qj is an
arbitrary probability measure on X. In this case, the corresponding GRS algorithm converges
if

∑∞
j=1 αj = ∞.

Rate of convergence of PRS. Assume X ⊆ Rd with vol(X) = 1 and the points x1, x2, . . . , xn

are independent and have uniform distribution on X (that is, GRS algorithm is PRS). The
rate of convergence of PRS to the minimizer x∗ is the fastest possible (for the worst con-
tinuous objective function) among all GRS algorithms. To guarantee that PRS reaches the
ε-neighbourhood B(x∗, ε) of a point x∗ with probability at least 1 − γ, we need to perform at
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least n∗ = d−log(γ)·Γ (
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2
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)
/(π

d
2 εd)e iterations, where Γ(·) is the Gamma-function. This may

be a very large number even for reasonable values of d, ε and γ. For example, if d = 10 and
ε = γ = 0.1 then n∗ ' 0.9 ·1010. See Sect. 2.2.2 in [5] for an extensive discussion on convergence
and convergence rates of PRS and other GRS algorithms.

Markovian GRS algorithms. In a Markovian GRS algorithm, the distribution Pj depends
only on the previous point xj−1 and its function value f(xj−1); that is, the sequence of points
x1, x2, . . . constitutes a Markov chain. The most known Markovian GRS algorithms are the
simulated annealing methods [4]. If a particular simulated annealing method creates a time-
homogeneous Markov chain then the corresponding stationary distribution of this Markov chain
is called Gibbs distribution. Parameters of the simulated annealing can be chosen so that the
related Gibbs distribution is concentrated in a narrow neighbourhood of the global minimizer x∗.
The convergence to the Gibbs distribution can be very slow resulting in a slow convergence of
the corresponding simulated annealing algorithm. The convergence of all Markovian GRS
algorithms is generally slow as the information about the objective function obtained during
the search process is used ineffectively.

Population-based methods. Population-based methods are very popular in practice [3].
These methods generalize the Markovian GRS algorithms in the following way: rather than
to allow the distribution Pj of the next point xj to depend on the previous point xj−1, it is now
the distribution of a population of points (descendants, or children) depends on the previous
population of points (parents) and the objective function values at these points. There are
many heuristic arguments associated with these methods [3]. There are also various probabilis-
tic models of the population-based algorithms [6].

Statistical inference in GRS. The use of statistical procedures can significantly accelerate the
convergence of GRS algorithms. Statistical procedures can be especially useful for defining the
stopping rules and the population sizes in the population-based algorithms. These statistical
procedures are based on the use of the asymptotic theory of extreme order statistics and the
related theory of record moments. As an example, consider PRS and the corresponding sample
S = {f(xj), j = 1, . . . , n}. This is an independent sample of values from the distribution with
c.d.f. F (t) =

∫
f(x)≤t

P (dx) and the support [f∗, f ∗], where f ∗ = supx∈X f(x). It can be shown

that under mild conditions on f and P , this distribution belongs to the domain of attraction
of the Weibull distribution, one of the extreme value distributions. Based on this fact, one can
construct efficient statistical procedures for f∗ using several minimal order statistics from the
sample S.

For the theory, methodology and the use of probabilistic models and statistical inference in
GRS, we refer to [5] and [6].
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