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Abstract In this paper we develop a methodology for defining stopping rules in a

general class of global random search algorithms that are based on the use of statistical

procedures. To build these stopping rules we reach a compromise between the expected

increase in precision of the statistical procedures and the expected waiting time for this

increase in precision to occur.
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1 Introduction

We consider a general minimization problem f(x) → minx∈A with objective function

f(·) and feasible region A. We assume that A ⊆ Rd and 0 < vol(A) < ∞. Let x∗

be the global minimizer; that is, x∗ is a point in A such that f(x∗) = m where

m = minx∈Af(x).

There is an extensive literature on global optimization. Intelligent global optimiza-

tion techniques try to extract as much information as possible from prior informa-

tion about the objective function f(·) and the feasible region A and from previously

computed values of the objective function. There are as many purely deterministic

techniques as purely stochastic. There are also techniques that can be considered as

mixtures of both. Among them, one of the first and most influential is the so-called

information-statistical technique developed by R.G. Strongin, see [8]. It has been fur-

ther developed by R.G. Strongin and his coauthors into a powerful methodology of

modern global optimization. For a comprehensive description of this methodology and

related topics we refer to [9].

In this paper, we restrict ourselves to stochastic methods and consider the following

general class of global random search algorithms (see Algorithm 2.2 in [15]).
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Algorithm 1.

1. Choose a probability distribution P1 on A; set the step number to j = 1.

2. Obtain Nj points x
(j)
1 , . . . , x

(j)
Nj

in A by independently sampling from the distribu-

tion Pj .

3. Using the points xi
l(i) (l(i) = 1, . . . Ni; i = 1, . . . j) and the objective function values

at these points, construct a distribution Pj+1 on A.

4. Substitute j + 1 for j and return to 2.

Algorithm 1 is a convenient general scheme for describing population-based methods

including the celebrated genetic algorithms. These methods have proved to work well

in complex global optimization problems of reasonably high dimension (like d ∼= 10).

As long as the objective function is not too nasty and simulation of random points in

A and its subsets is not too difficult, all reasonable rules for choosing the probability

distributions Pj lead to a satisfactory performance of the related algorithms. One of the

attractive features of these algorithms is the fact that very often they are reasonably

robust with respect to the difficulty of the problem (expressed through f and A) and

to the choice of parameters of the algorithms; for more discussion on this topic see

Sections 2.1, 2.2 and 3.5 in [15].

There are several stopping rules involved in Algorithm 1. There is a global stopping

rule which defines how many steps j (j = 1, 2, . . .) should be run. There are also

stopping rules at each step j; these are defined in Algorithm 1 as numbers Nj (j =

1, 2, . . .). In this paper, we shall be concerned with the problem of choosing the stopping

rules Nj (j = 1, 2, . . .).

We assume that at step j we only use the results of the current step j; the results

of previous j − 1 steps are only used to construct the distribution Pj . We thus drop

the index j and formulate the problem as follows.

Assume we have x1, x2, . . ., a sequence of independent identically distributed points

in A with distribution P, and the corresponding sequence of values of the objective func-

tion at these points: y1 = f(x1), y2 = f(x2), . . . After computing n values y1, . . . , yn

we construct a confidence interval (c.i.) for m = ess inf y (here y is the random vari-

able with the same distribution as y1, y2, . . .). We need to make a decision for choosing

between the following two alternatives: (a) carry on computing values yn+1, yn+2, . . .

until the next update of the c.i., and (b) stop the computations and either terminate

the algorithm or move to the next step of Algorithm 1 (by updating the distribution

P = Pj).

Random variables yi = f(xi), xi ∼ P, have the c.d.f.

F (t) =

∫

f(x)≤t
P(dx) . (1)

If the distribution P is such that

P
(
Bε(z

∗)
)

> 0 for any ε > 0 , (2)

where Bε(z
∗) = {z ∈ A : ‖z − z∗‖ ≤ ε}, then the lower end-point of the distribution

with c.d.f. F (t), m = ess inf y, is at the same time m = minx∈Af(x). Otherwise, if the

condition (2) is not met, m = infBf(x) may be larger than minx∈Af(x); here B is the

support of the distribution P.
Note that the construction of confidence intervals for m is the key statistical element

in the so-called ’branch and probability bound methods’, see [13] and [15], pp.83-84.
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Additionally, the main statistical tests for testing the hypotheses about m = ess infy

are based on the c.i. for m defined by (3), see Sect. 7.1.5 in [14].

Of course if the sample size n increases then the length of the c.i. decreases. How-

ever, the decrease of this length slows down as n increases and, as we will see later, one

needs to wait longer and longer for the next change of the length of the c.i. Reaching a

compromise between these two contradictory criteria (keeping n reasonably small and

reaching short c.i.) is the main point of discussions in this paper.

Let k be a fixed integer and y1,n ≤ . . . ≤ yk,n be order statistics corresponding to

the sample {y1, . . . , yn}. The statistical inference in global random search algorithms

are often based only on the lowest k order statistics y1,n, . . . , yk,n rather than on the

whole sample {y1, . . . , yn}, see [14,15]. Two main reasons for this are: (a) larger order

statistics carry very little information about the value of the minimum m, and (b)

in this case one can use the asymptotic extreme value theory to develop statistical

procedures and study the quality of these procedures.

Note that the choice of k can be an important practical issue. If k is too small (for

example, k = 2 or 3) then the precision of related statistical procedures can be low

while large values of k require much larger values of the sample size n (otherwise the

statistical procedures will be heavily biased). For further discussion on the choice of k,

see [4] and Sect. 2.4.3 in [15].

We shall always follow the rule of using the lowest k order statistics for choosing

values Nj in Algorithm 1. We can thus refer to Algorithm 1 as a k-adaptive global

random search algorithm. There is a relation of this class of algorithms to the so-called

’pure adaptive search’, see [10–12] and especially to the ’pure adaptive search of order

k’, see Sect. 2.2.4 in [15]. It is assumed in the pure adaptive search algorithm or order k

that at each iteration the values of the lowest k order statistics are updated by ignoring

the procedure of obtaining these order statistics. In Algorithm 1 these order statistics

are obtained by means of the straightforward independent sampling from the given

distribution. In particular cases, other techniques reducing the cost of obtaining the

values of the lowest k order statistics could perhaps be used.

2 Confidence Intervals for m and Results From the Theory of Order

Statistics

2.1 Confidence intervals

We shall use the following c.i. for m = ess inf y based on the order statistics from the

sample {y1, . . . , yn}:

Ik,δ = [y1,n − rk,δ(yk,n − y1,n), y1,n] . (3)

Here rk,δ is some constant, rk,δ = 1/

((
1− δ1/k

)1/α
− 1

)
, and k is fixed. The value

of α is defined below (in most cases α = d/2, where d is the dimension of A). It is

shown in [1], Sect. 7.1.4 in [14] and Sect. 2.4.2 in [15], that the asymptotic confidence

level of the c.i. (3) tends to 1 − δ as n → ∞. The construction of confidence intervals

according to (3) has been suggested in [1]; this construction is the most suitable in the

problems of global random search. Indeed, the c.i. (3) is simple and semi-parametric

in the sense discussed below; no semi-parametric confidence intervals are known in the

literature that lead to shorter confidence intervals than (3). Additionally, as has been
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noted already, the main statistical tests for testing the hypotheses about m are based

on the c.i. (3).

The length of the c.i. (3) is proportional to yk,n−y1,n and is decreasing as n →∞.

Each time yk,n is updated this length changes. Let ni index the values of n in which

the k-th order statistic changes; that is, the value yni is smaller than the previous k-th

order statistic: yni < yk,ni−1.

(a) (b)

(c) (d)

Fig. 1 (a) Typical trajectory of the sequence of yk,ni
−y1,ni (i = 1, . . . , 600); α = 5, k = 20;

(b) related sequence of normalized values (yk,ni
− y1,ni )/(yk,ni

−m); (c) related sequence of
ratios Rk,i defined in (4); (d) the histogram of the ratios plotted in (c).

Figure 1(a) shows a typical sequence of values of yk,ni
− y1,ni plotted only at the

values n = ni (i = 1, 2, . . .). It is clearly seen at this figure that yk,ni
− y1,ni tends to

zero as ni →∞. To illustrate the rate of this convergence to zero, we normalized these

values as (yk,ni
− y1,ni)/(yk,ni

−m) and plotted the related sequence in Figure 1(b).

Another natural way of renormalizing the values of yk,ni
− y1,ni is to consider the
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ratios

Rk,i =
(
yk,ni+1 − y1,ni+1

)
/

(
yk,ni

− y1,ni

)
. (4)

The sequence of these ratios computed from the sequence depicted in Figure 1(a) is

shown in Figure 1(c). The corresponding histogram is presented in Figure 1(d). This

histogram gives an idea about the distribution of the ratios (4). In Section 3 we study

this distribution.

The simulations used to produce the plots in Fig. 1 are made for the c.d.f. F (t) = tα,

0 ≤ t ≤ 1. We have made similar simulations for the c.d.f.’s expressed through (1) and

therefore arising from the test functions of global optimization, see [4]. The plots are

very similar to the ones displayed in Fig. 1.

2.2 Some facts from the asymptotic theory of order statistics

Let {y1, . . . , yn} be an independent sample of values of a r.v. y with a c.d.f. F (·) such

that m = ess inf η > −∞ and let y1,n ≤ . . . ≤ yn,n be the related order statistics. In

global random search applications, the c.d.f. F (·) has the form (1).

Consider the asymptotic distribution of the sequence of the (normalized) lowest

order statistics y1,n, as n → ∞. The following result is classical in the asymptotic

theory of order statistics (for proofs, discussions and generalizations, see [2,3,5–7]).

Theorem 1. Assume that ess inf y = m > −∞, where y has c.d.f. F (t), and

the function V (v) = F
(
m + 1

v

)
regularly varies at infinity with some exponent (−α),

0 < α < ∞; that is,

lim
v→∞

[
V (tv)/V (v)

]
= t−α, for each t > 0 . (5)

Then limn→∞ F1,n(m + (κn −m)z) = Ψα(z) , where F1,n is the c.d.f. of the minimum

order statistics y1,n,

Ψα(z) =

{
0 for z < 0,

1− exp (−zα) for z ≥ 0
(6)

defines the so-called Weibull distribution and κn is the
(

1
n

)
-quantile of F (·): κn =

inf{u|F (u)≥1/n}.
Theorem 1 yields that for a wide class of distributions the distribution of the se-

quence of random variables (y1,n −m)/(κn −m) converges (as n →∞) to the random

variable which has the Weibull distribution with c.d.f. (6). This distribution has only

one parameter, α, which is called the tail index.

In the case ess inf y = m > −∞, the c.d.f. Ψα(z), along with its limiting case

Ψ∞(z) = limα→∞ Ψα(1 + z/α) = 1− exp (− exp(z)), −∞ < z < ∞, are the only non-

degenerate limits of the c.d.f.’s of the sequences (y1,n−an)/bn, where {an} and {bn}
are arbitrary sequences of positive numbers.

If there exist numerical sequences {an} and {bn} such that the c.d.f.’s of (y1,n−an)/bn

converge to Ψα, then we say that F (·) belongs to the domain of attraction of Ψα(·)
and express this as F ∈ D(Ψα). The conditions stated in Theorem 1 are neces-

sary and sufficient for F ∈ D(Ψα). There are two conditions: m = ess sup η < ∞
and the condition (5). The first one is easily met, in particular it is always valid

in global random search applications. The condition (5) can be written as F (t) =

c0(t−m)α + o((t−m)α) as t ↓ m , where c0 is a function of v = 1/(t−m), slowly
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varying at infinity as v → ∞. In particular, c0 may be any positive constant, but the

actual range of eligible functions is much wider.

Below we shall need one more important result from the asymptotic theory of order

statistics which is actually a generalization of Theorem 1, see e.g. [15], p. 57.

Theorem 2. If the conditions of Theorem 1 are met and n →∞, then the asymp-

totic distribution of (
y1,n −m

κn −m
, . . . ,

yk,n −m

κn −m

)

is the same as of the random vector
(
ν
1/α
1 , (ν1 + ν2)

1/α, . . . , (ν1 + . . . + νk)1/α
)

,

where ν1, . . . , νk are i.i.d. r.v. with density e−x, x ≥ 0.

2.3 The value of the tail index

In problems of global random search the value of the tail index can often be exactly

identified, see [15], Sect. 2.5.3. Assume, for simplicity, that the global minimizer x∗ is

uniquely defined and belongs to the interior of A. Assume also that f(·) is piece-wise

continuous in A and twice continuously differentiable in the vicinity of x∗, ∇f(x∗) = 0

and the Hessian ∇2f(x∗) is non-degenerate. Additionally, assume the condition (2)

concerning the distribution P. Then the value of the tail index α is uniquely determined

and equals α = d/2, where d is the dimension of A. This fact and the results quoted

in the previous section justify the use of the c.i. (3) in algorithms of global random

search.

2.4 Waiting time until the next update

Here we derive the distribution and related moments for waiting times to the next

update of the k-th order statistic assuming that we have an i.i.d. random sample

{y1, . . . , yn} of size n. Note that this distribution only depends on n and k and does

not depend on the record number and on the distribution of {y1, . . . , yn}, as long as

this distribution is continuous (which is an assumption below).

Let yn+1, yn+2, . . . be i.i.d.r.v. with the same distribution as {y1, . . . , yn} and let

n′ = n + w be the first value of yn+i such that yn+i < yk,n. Then the r.v. w = Wk,n

is the waiting time until the next update. Using the standard arguments used in the

theory of k-th records (see, for example, [6], Lecture 19) we derive the distribution of

Wk,n.

In order for the next k-th record to occur at time n + w (where n ≥ k and w > 0),

no k-th records may occur at times n + 1, . . . , n + w− 1, and a k-th record must occur

at time n + w. For any t ≥ k, P(Ik,t = 1) = k/t and P(Ik,n = 0) = (t − k)/t, where

Ik,t is the indicator of the event that k-th record occurs at time t. Additionally, the

random variables Ik,t1 , Ik,t2 , . . . are mutually independent for k ≤ t1 < t2 < . . .. This

implies

P(Wk,n = w) = P(Ik,n+1 = 0, . . . Ik,n+w−1 = 0, Ik,n+w = 1)

=
k(n + w − k − 1)!n!

(n + w)!(n− k)!
, n ≥ k, w > 0 .
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Using this we can calculate the moments of Wk,n. In particular,

E(Wk,n) = n/(k − 1) . (7)

The expected waiting time for the next update when k = 1 is infinite for all n ≥ 1. Note

that the distribution of Wk,n (and hence the expectation E(Wk,n)) does not depend

on the fact whether there was an update of the k-th record at time n.

An alternative way of establishing the result (7) would be to use the asymptotic

theory of records (see e.g. [7]) according to which the moments of occurrence of k-th

records asymptotically (as n → ∞) follow the Poisson process with intensity k log n

(this would imply the result (7) only asymptotically, as n →∞).

3 A Study of the Distribution of the Ratios (4)

3.1 Asymptotic length of the confidence interval (3)

Below we study the distribution of the ratios (4). Random values from this distribution

give the multipliers for the length of the c.i. (3). Indeed, for a sample of size n ≥ k,

this length is proportional to (yk,n − y1,n), where the coefficient of proportionality is

rk,δ. After N updates of the k-th record yk,n, the length of the c.i. (3) is

LN = rk,δ(yk,nN
−y1,nN ) = rk,δ

[
N∏

i=1

(yk,ni
− y1,ni)

(yk,ni−1−y1,ni−1)

]
(yk,n0−y1,n0) = c

N∏

i=1

Rk,i−1,

where n0 = k and c = rk,δ(yk,n0−y1,n0) = rk,δ(yk,k−y1,k). The length LN tends to 0

as N → ∞, see Figure 1(a), and it is natural to normalize this length by considering

the reduction of the length per update, that is, to use L
1/N
N . Then we can consider the

limit

lim
N→∞

L
1/N
N = lim

N→∞

[
c

N∏

i=1

Rk,i

]1/N

= lim
N→∞

[
N∏

i=1

Rk,i

]1/N

.

Equivalently, we can consider the asymptotic behaviour (as N →∞) of

log L
1/N
N =

1

N

[
log c +

N∑

i=1

log Rk,i

]
−→ E log Rk (as N →∞), (8)

where Rk is a r.v. which has the asymptotic distribution of the ratios (4). The consid-

eration of large N allows us to achieve the following: (i) to get rid of the constant c

in (8), (ii) to use the law of large numbers in (8), and (iii) to use the asymptotic repre-

sentation of Theorem 2 for studying the asymptotic distribution of the ratios (4) and

their logarithms.

Taking the exponent of both sides in (8) leads us to the observation that asymp-

totically (for large N) the value rk = exp{E log Rk} is an average multiplier in the

expression for the length LN . In the next section this value will be considered as the

main characteristic of interest.

Note also that the distribution of the logarithms of the ratios (4) behaves better

than the distribution of the ratios (4) themselves. This can be seen by comparing

Figure 1(d) with histograms of Figure 2.
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(a) α = 1 k = 3 (b) α = 1 k = 10

(c) α = 3 k = 3 (d) α = 3 k = 10

Fig. 2 Histograms of log Rk,i for different k and α; i = 1, . . . , 10000.

3.2 Asymptotic distribution of the ratios (4)

Consider the ratio Rk,i = (yk,ni+1 − y1,ni+1)/(yk,ni
− y1,ni) defined in (4) and assume

that i is large (so that we can use the asymptotic representations). Note that yk,ni
−

y1,ni = yk,n − y1,n for all n such that ni ≤ n < ni+1. We can therefore write the ratio

Rk,i in the form

Rk,i = Rk =
(
y′k − y′1

)
/
(
yk − y1

)
, (9)

where y1 = y1,n, yk = yk,n, y′1 = y1,ni+1 and y′k = yk,ni+1 ; here ni+1 is the smallest

value of n′ > n such that the k-th order statistic is changed at time n′: ni+1 =

min{n′ > n : yn′ < yk,n}.
We assume that k ≥ 3, n is large and we use the representation of Theorem 2 which

can be written in the form

yk − y1

κn −m
∼ (ν1 + η + νk)1/α − ν

1/α
1 (10)
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where ν1, νk and η are independent random variables, ν1 and ν2 have exponential

density e−x, (x ≥ 0) and η has the Gamma density

ϕk−2(x) =
1

Γ (k − 2)
xk−3e−x, x ≥ 0.

Our aim now is to write down the ratio (9) in a form similar to (10).

There are three possible cases for how the next update of the order statistics y1

and yk is made.

Case 1. The new observation is smaller than y1; that is, the first order statistic is

changed: y′1 < y1; y′k is therefore equal to yk−1,n.

Case 2. The new observation is between y1,n and yk−1,n. Then y′1 = y1 and y′k =

yk−1,n.

Case 3. The new observation is between yk−1,n and yk,n. In this case, y′1 = y1 and

y′k is larger than yk−1,n but smaller than yk = yk,n.

Conditionally on the values of ν1, η and νk, the three cases occur with the following

probabilities:




Case 1 occurs with probability ν1
ν1+η+νk

;

Case 2 occurs with probability η
ν1+η+νk

;

Case 3 occurs with probability νk
ν1+η+νk

.

Consider the following representation for y′k − y′1 in each of these cases:

y′k − y′1
κn −m

=





(ν1 + η)1/α − (Uν1)
1/α in Case 1 ;

(ν1 + η)1/α − ν
1/α
1 in Case 2 ;

(ν1 + η + Uνk)1/α − ν
1/α
1 in Case 3 .

Here U is a random variable with uniform distribution on [0, 1] and independent of ν1,

ν2 and η.

Therefore the ratio (9) can be expressed in terms of ν1, νk, η and U as follows:

Rk =
y′k − y′1
yk − y1

=





(ν1+η)1/α−(Uν1)
1/α

(ν1+η+νk)1/α−ν
1/α
1

with probability ν1
ν1+η+νk

;

(ν1+η)1/α−ν
1/α
1

(ν1+η+νk)1/α−ν
1/α
1

with probability η
ν1+η+νk

;

(ν1+η+Uνk)1/α−ν
1/α
1

(ν1+η+νk)1/α−ν
1/α
1

with probability νk
ν1+η+νk

.

(11)

The update of the ratio Rk in Cases 2 and 3 is very similar and always leads to

the values Rk < 1. Case 1, when y1 is getting updated, is different. In this case, it is

not untypical to obtain values Rk > 1. To distinguish the update of Rk in Case 1 and

in Cases 2-3, in Figure 1 we marked the updates of Rk in Case 1 with crosses, while

the updates of Rk in Cases 2-3 are simple dots.

Computation of moments of the random variable (11), including the most important

characteristic rk = exp{E log Rk}, can be done either by simulation or by numerical

integration: the four-dimensional intergal for computing the distribution of the r.v.

(11) can easily be written down. In what follows, the value

uk = −(k − 1) log rk = −(k − 1){E log Rk}

is more important than rk itself. Figure 3 displays the values of uk as functions of α

(for k = 5, 10, 20) and k (for α = 1, 3, 10). The data in this figure have been prepared
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on the base of extensive simulations. Additionally, the simulation results have been

checked using the numerical integration of the related expressions for E log Rk (which

is a more difficult way to compute the four-dimensional integrals).

(a) k = 5, 10, 20 (b) α = 1, 3, 10

Fig. 3 Values of uk = −(k − 1){E log Rk} as functions of α (for k = 5, 10, 20) and k (for
α = 1, 3, 5).

3.3 Stopping rules

Consider the k-adaptive global random search algorithms which are written in the form

of Algorithm 1 and use the lowest k order statistics for constructing the c.i. (3) for the

value of m = minx∈A f(x). The key characteristics we suggest to consider for defining

the stopping rules N = Nj at each step j of Algorithm 1 are:

– n, the number of computations (evaluations of the objective function) already made

at the step j;

– the expected waiting time to the next update E(Wk,n) = n/(k − 1), see (7); and

– the values rk = exp{E log Rk}, see Figure 3 and the explanation of the importance

of rk in Section 2.1.

The values of rk do not depend on n (assuming n is large enough so that the theory

above is applicable) while the expected wait to the next update is proportional to n.

This implies that the usefulness of the values f(x
(j)
n+l) (l = 1, 2, . . . , o(n)) is inversely

proportional to n. It is worthwhile to remind at this point, see Section 2.4 for details,

that the distribution of Wk,n is the same whether or not there was an update of the

k-th record at time n.

Assume, for example, that we want to achieve 100β% of the current length of

the c.i. (3) by making further evaluations of the objective function (here we assume

β < 1 and β is not much smaller than 1). Each new k-th record gives us on average

100rk% decrease of the c.i. Thus on average we need τ = log β/ log rk decreases to get
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100β% decrease of the current c.i. To get one decrease of the c.i., we need on average

ñ = n/(k − 1) further iterations and hence on average we need about

ñτ =
n

k − 1

log β

log rk
=
−n log β

uk

iterations to reduce the length of the c.i. (3) to 100β% of its current length. Let us now

assign cost 1 to each evaluation of the objective function and gain Cβ to a decrease of

the length of the c.i. (3) from its current value to 100β%. Then the above considerations

lead us to the following definition of the stopping rule:

N = min

{
n : n

− log β

uk
≥ Cβ

}
=

⌈
Cβ uk

− log β

⌉
. (12)

The stopping rule (12) is defined by the following constants: β, Cβ , k and rk. Let us

briefly discuss the values of these constants and the freedom one can have in choosing

some of them.

• k: see Section 1 for a discussion on the choice of k. Note that the dependence of uk

(and therefore the stopping rule (12)) on k is very weak, see Fig. 3(b).

• rk: this constant is uniquely defined through k and α, see Sections 2.1 and 3.2.

• β: there are two constraints: β < 1 and β ' 1. A natural choice of β is β = rk. In

this case, the stopping rule (12) is simply N =
⌈
Cβ(k − 1)

⌉
.

• Cβ : the interpretation of this constant is obvious. Basically, this is the only constant

which is free to choose. Clearly, we have to have Cβ >>1 if β is not very close to 1.

The dependence of the stopping rule on the original optimization problem is ex-

pressed only through α, the tail index of the underlying extreme value distribution.

The value of α is often uniquely determined in the problems of global optimization,

see Section 2.2. Alternatively, it can be estimated.
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