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Abstract

Let X be a compact subset of Rd and {x1, . . . , xN} be a sample of
random points in X . It is well–known that any properly organized strat-
ified sampling procedure is superior to the independent sampling with
respect to the variance of Monte Carlo estimates of integrals of functions
in L2(X ). We prove similar results for some perfomance characteristics
important in global optimization. We also demonstrate that the stratified
sample with the maximum stratification is optimum, in a suitable sense.

1 Introduction

Let (X ,B, P ) be a measure space, X be a compact subset of Rd, B be the σ-
algebra of Borel subsets of X and P be a probability measure on (X ,B), we call
it uniform distribution. Let also F ⊆ C(X ) be a functional class, N be a fixed
number, Ξ = (x1, x2, ..., xN ) ∈ XN , M [f, Ξ] = maxxi∈Ξ f(xi).

If Ξ is a random vector in XN with certain distribution Q(dΞ), then the
ordered pair Π=(M [f, Ξ], Q) is called random search procedure for the global
maximum of f ∈ F .

Consider a partition Pm of X into m disjoint connected subsets of positive
measure:

Pm : X =
m⋃

i=1

Xi, Xi∈B, qi =P (Xi)>0 for i=1, . . . ,m, Xi ∩ Xj =∅ for i 6=j.

Since P is a probability measure,
∑m

i=1 qi = 1. Define the uniform probability
measure Pi on Xi by Pi(A) = P (A ∩ Xi)/qi for every A ∈ B.

Given a partition Pm and a collection of integers L = {l1, . . . , lm} such that∑m
i=1 li = N, the stratified sample Ξm,L can be defined as

Ξm,L = (x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) (1)
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where for every i = 1, . . . , m, xi,1, . . . , xi,li are independent random variables
with the uniform distribution Pi on Xi. (In practice, an additional randomiza-
tion on the order of generation of xi,j is sometimes useful as well.)

We shall call the stratified sample (1) proper stratified sample if the number
of points in Xi is proportional to qi = P (Xi), that is,

li = Nqi for all i = 1, . . . ,m . (2)

The joint distribution of the random vector (1) is

Qm,L(dΞm,L) =
l1∏

i1=1

P1(dx1,i1)× . . .×
lm∏

im=1

Pm(dxm,im
) .

The random search procedure Πm,L = (M [f, Ξm,L], Qm,L) with m > 1 corre-
sponds to the stratified sampling on X , and Π1 = Π1,N = (M [f, Ξ1,N ], Q1,N )
corresponds to the independent sampling from the distribution P .

For a fixed f ∈ F , let Ψf (Π) be a criterion for comparison of procedures Π.
In line with the general concept of domination, we say that Π dominates Π′ in
F if Ψf (Π) ≤ Ψf (Π′) for every f ∈ F and there exists a function f∗ ∈ F such
that Ψf∗(Π) < Ψf∗(Π

′).
Below we consider two related dominance criteria: (i) the cumulative distri-

bution function (c.d.f.) of the record value M [f, Ξ] = maxxi∈Ξ f(xi) achieved
at the sample points, and (ii) k-th moment of the difference maxX f −M [f, Ξ],
for every k > 0. Some other criteria are studied in [1]. The results of the paper
confirm the assertion of [1] that the ”reduction of randomness” and ”increase
of uniformity” improves the performance of Monte Carlo procedures for global
optimization.

2 Stochastic dominance with respect to the record
value

Let us consider the stochastic dominance when the criterion Ψf (Π) is the c.d.f.
of the record value M [f, Ξ] = maxxi∈Ξ f(xi):

Ff,Π(t) = P (M [f, Ξ] ≤ t), t ∈ (min f, max f). (3)

In this case, the dominance of a procedure Π over Π′ in F means that Ff,Π(t) ≤
Ff,Π′(t) for all real t and f ∈ F and there exists f∗ ∈ F such that Ff∗,Π(t) <
Ff∗,Π′(t) for all t ∈ (min f∗, max f∗).

Theorem 1. Let Pm be a fixed partition of X into m≤N subsets, F =
Cp(X ) for some 0 ≤ p ≤ ∞ and Πm,L = (M [f, Ξm,L], Qm,L) be a stratified
sampling random search procedure such that L={l1, . . . , lm}, li≥0,

∑m
i=1 li =

N. Then



(i) if the stratified sample Ξm,L is proper, that is (2) holds, then the strat-
ified sampling random search procedure Πm,L stochastically dominates
the independent random sampling procedure Π1 in F , with respect to the
criterion (3);

(ii) if (2) does not hold for at least one i, then Πm,L does not stochastically
dominate Π1: there exists f∗ ∈ F such that for some t Fm,L(f∗, t) >
F1(f∗, t) where Fm,L(f, t) = Ff,Πm,L

(t) and F1(f, t) = Ff,Π1(t) are the
c.d.f. (3) for the stratified and independent sampling procedures, respec-
tively.

Proof. Let f be an arbitrary function in F . Then the c.d.f. F1(f, t) for the
independent sampling procedure Π1 = (M [f, Ξ1,N ], Q1,N ) can be rewritten as

F1(f, t)=P (f(x1,j)≤ t, j =1, . . . , N)=PN (f(x1,j)≤ t)=PN (At)

where At = f−1((−∞, t]) is the inverse image of the set (−∞, t]. Since {Xi}m
i=1

is a complete system of events, we have

P (At) =
m∑

i=1

P (At ∩ Xi) =
m∑

i=1

βi

where

βi = P (At ∩ Xi), i = 1, . . . , m,

m∑

i=1

βi = P (At) ≤ 1.

We thus have

F1(f, t) =

(
m∑

i=1

βi

)N

.

For the stratified sampling procedure Πm,L = (M [f, Ξm,L], Qm,L) the c.d.f.
Fm,L(f, t) can be analogously rewritten as

Fm,L(f, t)=P (f(x1,1)≤ t, . . . , f(x1,l1)≤ t, . . . , f(xm,lm)≤ t) =

m∏

i=1

P li
i (f(xi,j)≤ t) =

m∏

i=1

(P ({f(xi,j)≤ t} ∩ Xi)/qi)
li =

m∏

i=1

(
βi

qi

)li

.

For every i = 1, . . . , m, set

γi =
li
N

, αi =
βi

qi
= P (At ∩Xi)/P (Xi) .



Then

0 < γi < 1, 0 ≤ αi ≤ 1 for i = 1, . . . ,m,

m∑

i=1

γi = 1

and the vector α = (α1, . . . , αm) may get any value in the interior of the cube
[0, 1]m depending on f and t.

The representations for the c.d.f. Fm,L(f, t) and F1(f, t) and (4) imply that
the following two inequalities are equivalent:

Fm,L(f, t) ≤ F1(f, t) ⇐⇒
m∏

i=1

αγi

i ≤
m∑

i=1

qiαi

which we rewrite in a more convenient form

Fm,L(f, t) ≤ F1(f, t) ⇐⇒
m∑

i=1

γi log αi ≤ log

(
m∑

i=1

qiαi

)
(4)

Analogous equivalence takes place when the sign ≤ in (4) is substituted for the
strict inequality sign.

Let us now prove (i). If (2) holds then γi = qi for all i = 1, . . . , m and the
validity of the second inequality in (4), for every α ∈ [0, 1]m and thus for every
f ∈ F , follows from the concavity of the logarithm. Consider a function f∗ ∈ F
such that 0 ≤ f ≤ 1, f∗(x) = 0 for all x ∈ X1 and maxx∈X2 = 1. Then

α1 = P (At ∩X1)/P (X1) = 1 and α2 = P (At ∩X2)/P (X2) < 1

for all t ∈ (0, 1) = (min f, max f). Therefore the values αi are not all equal each
other and the strict concavity of the logarithm implies the strict inequality in
(4).

Let us now turn to (ii). Assume that (2) does not hold. Then there exists
i0 ≤ m such that γi0 < qi0 . Consider a function f∗ ∈ F such that f∗(x) = 0 for
all x ∈ X \ Xi0 and maxx∈Xi0

= 1. Then αj = 1 for all j 6= i0 and αi0 gets all
values in (0, 1) depending on t.

Let us show that for the function f∗ the inequality

m∑

i=1

γi log αi > log

(
m∑

i=1

qiαi

)
(5)

holds for all sufficiently large αi0 < 1. Denote ε = 1 − αi0 > 0 and rewrite the
inequality (5) as h(ε) > 0 where

h(ε) = γi0 log(1− ε)− log(1− qi0ε) .

At ε = 0 we have h(0) = 0 and h′(0) = −γi0 + qi0 > 0, where we have
used the fact that γi0 < qi0 . This implies h(ε) > 0 for all sufficiently small



ε > 0 and therefore the validity of (5). In its turn, it yields that the inequality
Fm,L(f∗, t) > F1(f∗, t) holds for all t sufficiently close to 1.

Corollary. Analogously to (i) in Theorem 1 we can easily get that if m′<m,
Pm is a subpartition of a partition Pm′ , Ξm,L is a proper stratified sample
and Πm,L and Πm′,L′ are the random search procedures, corresponding to the
stratified samples Ξm,L and Ξm′,L′ , then Πm,L stochastically dominates Πm′,L′

in F = Cp(X ) for every 0 ≤ p ≤ ∞. This particularly implies that the stratified
sample Ξm,L with the maximum stratification, that is, when P (Xi) = 1/m and
L = (1, . . . , 1), generates the best possible random search procedure Πm,L, with
respect to the stochastic dominance based on the c.d.f. (3).

3 Asymptotic criteria

In the present section we only consider proper stratified sampling procedures
Πm,l = Πm,L where P (Xi) = 1/m and li = l for all i = 1, . . . , m. We also
assume that N = ml, l=const, m → +∞, that is, the number of subsets in the
partition Pm tends to infinity but the number of points in each subset stays
constant.

As the criteria for comparison of procedures, consider now k-th moment
of the random variable (M [f ] − M [f, Ξm,l]) where M [f ] = maxx∈X f(x) and
Ξm,l = Ξm,L for L = (l, . . . , l):

Ψf (m, l) = E(M [f ]−M [f, Ξm,l])k, k > 0 . (6)

Theorem 1 implies that the stratified sampling procedure Πm,l is superior to
the independent sampling procedure Π1,N with respect to the criteria (6), for
every k > 0. Theorem 2 below establishes the qualitative result concerning this
superiority.

Let the class of distributions {P} and the functional class F∗ of continuous
functions f(x) = ϕ(x− x∗) with a unique point of the global maximum x∗(f),
at this point f(x∗) = M [f ], satisfy the following two conditions.

Condition A. For the c.d.f. Ff (t) =
∫

f(x)≤t
P (dx), the function Vf (v) =

1−Ff (M [f ]− 1/v), v > 0, regularly varies at infinity with some index −α < 0,
that is, limv→∞ Vf (uv)/Vf (v) = u−α for all u > 0.

Condition B. The point x∗ has a certain distribution R(dx) on (X ,B)
which is equivalent to the Lebesgue measure on (X ,B).

The above conditions have been introduced and studied in [1,2]. It is shown
in these works that conditions A and B hold in a rather general setup. Condition
A is satisfied, for example, when X is a compact subset of Rd, the measure P is



equivalent to the Lebesgue measure in some neighbourhood of x∗, ∇ϕ(0) = 0,
and the matrix ∇2ϕ(0) is non-singular, in this case α = d/2.

The following theorem generalizes to arbitrary k > 0 the result of [1] for
k = 1, 2.

Theorem 2. Assume that the conditions A and B are satisfied, N = ml,
l=const, m →∞. Then for every k > 0 with R-probability 1

Ψf (m, l)
Ψf (1, N)

=
E(M [f ]−M [f, Ξm,l])k

E(M [f ]−M [f, Ξ1,N ])k
= r(l, k, α) + o(1), N → +∞, (7)

where

r(l, k, α) =
lk/αΓ(l + 1)

Γ(k/α + l + 1)
, (8)

and Γ(·) is the gamma function. Moreover, r(l, k, α) < 1 for every l, k, α>0,
function r(l, k, α) is strictly increasing as a function of l and
liml→∞ r(l, k, α) = 1.

Proof. If the condition A holds, then

lim
N→+∞

FN (M + (M − θN )t) = exp{−(−t)α}, ∀t ≤ 0,

where F = Ff , M = M [f ] = max f and θN is the (1 − 1/N)-quantile of the
c.d.f. F F (θN ) = 1−1/N. This implies

M − F−1(y) ∼ (M − θN )(−N log y)1/α, N →∞, ∀y ∈ (0, 1]

For the independent sample

Ψf (1, N) = E(M [f ]−M [f, Ξ1,N ])k = N

∫ +∞

−∞
(M − x)kFN−1(x)dF (x) =

N

∫ 1

0

(M−F−1(y))kyN−1dy∼N

∫ 1

0

(
(M−θN )(−N log y)1/α

)k

yN−1dy=

N1+k/α(M − θN )k

∫ 1

0

(log
1
y
)k/αyN−1dy =

N1+k/α(M − θN )k

∫ +∞

0

zk/αe−Nzdz = (M − θN )kΓ(k/α + 1)

Therefore,

E(M [f ]−M [f, Ξ1,N ])k ∼ (M − θN )kΓ(k/α + 1) , N →∞ (9)



Consider the stratified sample. By the condition B, the probability that the
point of the global maximum of f is on the boundary of one of the sets Xi is
0. Consider l largest values from the collection {f(xi,j); i = 1, . . . ,m; j =
1, . . . , l}. Since f is a continuous function and the global maximum is attained
at a single point x∗, then as m → +∞ all l points with the largest function f
values are located in one set, denote it Xi¦ . Therefore

F¦(t) = Pi¦(f(x) ≤ t) = m

(
P (f(x) ≤ t)− m− 1

m

)
= mF (t)−m + 1.

Let θ¦l be the (1−1/l)-quantile of the c.d.f. F¦(t). Since

1− F¦(θ¦l) = 1/l, 1−mF (θ¦l) + m− 1 = 1/l, 1− F (θ¦l) =
1

ml
=

1
n

,

we get θN = θ¦l.
Since F (t) satisfies condition A

F¦(M + (M − θ¦l)t) ∼ m exp{−(−t)−α/(lm)} −m + 1 ∼ 1− (−t)α/l .

Hence

M − F−1
¦ (y) ∼ (M − θN ) (l(1− y))1/α

, m → +∞ .

When m →∞, we thus get for every k > 0

Ψf (m, l) = E(M [f ]−M [f, Ξm,l])k = l

∫ +∞

−∞
(M − x)kF l−1

¦ (x)dF¦(x) =

l

∫ 1

0

(M − F−1
¦ (y))kyl−1dy ∼ l

∫ 1

0

(
(M − θn)l1/α(1− y)1/α

)k

yl−1dy =

(M − θN )kl1+k/α

∫ 1

0

yl−1(1− y)k/αdy = (M − θN )k Γ(k/α + 1)lk/αΓ(l + 1)
Γ(k/α + l + 1)

.

This and (9) yields (7).
Let us now fix k, α and study the function r(l) = r(l, k, α). Since r(1) =

1/Γ(2 + k/α) < 1 and the application of the Stirling formula yields

lim
l→∞

r(l) = lim
l→+∞

lk/α(2πl)1/2 exp(−l)ll

(2π(l + k/α))1/2 exp{−(l + k/α)}(l + k/α)l+k/α
= 1 ,

to complete the proof we only need to show that the function r(l) is strictly
increasing. Indeed,

log r(l + 1)− log r(l) = log
(

1 +
1
l

)k/α

− log
(

1 +
k/α

l + 1

)



This expression is positive for every l, k, α > 0 since

(
1+

1
l

)k/α

−
(

1+
k/α

l + 1

)
=

(
k

α

1
l
+

k
α ( k

α−1)
2!

1
l2

+. . .

)
−

(
1+

k

l

1
l
− k

α

1
l2

+. . .

)
=

k

α

(
k/α− 1 + 2!

2!l2
+

(k/α− 1)(k/α− 2)− 3!
3!l3

+ . . .

)

and the positivity of the last expression follows from the fact that this series is
alternating with rapid convergence and positive first term.
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