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In the problem of estimating the lower bound of a function over a continuous
set, a variety of linear estimators are used, as well as the maximum likelihood
estimator. The asymptotic mean square errors (MSE) of several linear esti-
mators asymptotically coincide with the asymptotic MSE of the maximum
likelihood estimator. In this paper we consider the non-asymptotic behaviour
of different estimators and show that the MSE of the best linear estimators
is superior to the MSE of the the maximum likelihood estimator.

1 Introduction

Let f : A → R be an objective function defined in feasible region A and
m = minx∈A f(x) be its global minimum. We always assume that A is a com-
pact subset of Rd for some d ≥ 1, vol(X) > 0 (where vol(·) stands for ‘vol-
ume’), m > −∞ and there is at least one global minimizer; that is, the point
x∗ ∈ A such that f(x∗) = m. We shall also assume that the objective function
f is continuous in the neighbourhood of this minimizer x∗. For simplicity we
also assume that the objective function f is bounded from above (this last
condition is made purely for technical reasons and can be relaxed).

We consider several estimators of m that are based on taking random sam-
ples of n points from the feasible region A and computing the corresponding
values of the objective function. The set of n points, Xn = {x1, . . . , xn}, will be
independent and identically distributed random variables/vectors (i.i.d.r.v.)
with common distribution P , where P is a probability measure defined on A.
We assume that there is a positive probability that a random point xj will be
in the vicinity of x∗.

Let Yn = {f(x1), . . . , f(xn)} = {y1, . . . , yn} be the i.i.d. r.v. obtained by
computing f(·) at the elements of the sample Xn. The yj will have common
cumulative distribution function (c.d.f.).

F (t) = P{x ∈ A : f(x) ≤ t} =
∫

f(x)≤t

P (dx) . (1)
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The minimum value of f(·) is the essential infimum of the r.v. y with the
c.d.f. (1):

m = min
x∈A

f(x) = ess inf y = inf{a : F (a) > 0} .

2 Asymptotic distribution of the minimum order
statistic

Let the sample size n be fixed and y1,n ≤ . . . ≤ yn,n be the order statistics
corresponding to the independent random sample Yn. Here yi,n represents the
i-th smallest member within the sample Yn = {y1, . . . , yn}.

Consider first the asymptotic distribution of the sequence of minimum
order statistic y1,n, as n → ∞. Generally, in the case m = ess inf y > −∞
(where y has c.d.f. F (t)) there are two limiting distributions possible; however,
in global random search applications, when F (·) has the form (1), only one
asymptotic distribution arises; specifically, the Weibull distribution with the
c.d.f.

Ψα(z) =

{
0 for z < 0
1− exp {−zα} for z ≥ 0 .

(2)

This c.d.f. has only one parameter, α, which is called ‘tail index’. The mean
of the Weibull distribution with tail index α is Γ (1 + 1/α); the density corre-
sponding to the c.d.f. (2) is

ψα(t) = (Ψα(t))′ = α tα−1 exp {−tα} , t > 0 . (3)

Let κn be the
(

1
n

)
-quantile of a c.d.f. F (·); that is, κn =inf{u|F (u)≥1/n}.

Note that since the objective function f(·) is continuous in a neighbouhood
of x∗, the c.d.f. F (·) is continuous in the vicinity of m and for n large enough
we have F (κn)=1/n.

The following classical result from the theory of extreme order statistics
is of primary importance for us.

Theorem 1. Assume ess inf η = m > −∞, where η has c.d.f. F (t), and the
function

V (v) = F

(
m +

1
v

)
, v > 0,

regularly varies at infinity with some exponent (−α), 0 < α < ∞; that is,

lim
v→∞

V (tv)
V (v)

= t−α, for each t > 0 . (4)

Then
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lim
n→∞

F1,n(m + (κn −m)z) = Ψα(z) , (5)

where F1,n is the c.d.f. of the minimum order statistics y1,n, the c.d.f. Ψα(z)
is defined in (2) and κn is the

(
1
n

)
-quantile of F (·).

The asymptotic relation (5) means that the distribution of the sequence of
random variables (y1,n −m)/(κn −m) converges (as n →∞) to the random
variable with c.d.f. Ψα(z).

The c.d.f. Ψα(z), along with its limiting case Ψ∞(z) = exp {− exp(z)},
z>0, are the only nondegenerate limits of the c.d.f.’s of the sequences
(y1,n−an)/bn, where {an} and {bn} are arbitrary sequences of positive num-
bers.

If there exist numerical sequences {an} and {bn} such that the c.d.f.’s of
(y1,n−an)/bn converge to Ψα, then we say that F (·) belongs to the domain
of attraction of Ψα(·) and express this as F ∈ D(Ψα). The conditions stated
in Theorem 1 are necessary and sufficient for F ∈ D(Ψα). There are two
conditions: m = ess sup η < ∞ and the condition (4). The first one is always
valid in global random search applications. The condition (4) demands more
attention. For example, it is never valid in discrete optimization problems as in
this problems the c.d.f. F (·) is not continuous (but F (·) has to be continuous
in the vicinity of m = ess inf y). In fact, for a c.d.f. with a jump at its lower
end-point no non-degenerate asymptotic distribution for y1,n exists, whatever
the normalization (that is, sequences {an} and {bn}).

The condition (4) can be written as

F (t) = c0(t−m)α + o((t−m)α) as t ↓ m , (6)

where c0 is a function of v = 1/(t−m), slowly varying at infinity as v →∞.
Of course, any positive constant is a slowly varying function, but the actual
range of eligible functions c0 is much wider.

The following sufficient condition (so-called von Mises condition) for (4)
and (5) is often used: if F (t) has a positive derivative F ′(t) for all t ∈ (m,m+ε)
for some ε > 0 and

lim
t↓m

(t−m)F ′(t)
F (t)

= α ,

then (4) holds.
The following condition is stronger that the condition (6) and often used

for justifying properties of the maximum likelihood estimators:

F (t) = c0(t−m)α
(
1 + O((t−m)β)

)
as t ↓ m (7)

for some positive constants c0, α and β.
In problems of global optimization we can establish a direct link between

the form (1) of the c.d.f. F (·), the condition (6) and the value of the tail index
α. The basic result is as follows.
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Assume that the objective function f is such that its global minimizer x∗

is unique and

f(x)−m = w(‖x−x∗‖)H(x−x∗) + O(‖x−x∗‖β), ‖x−x∗‖ → 0, (8)

for some homogeneous function H : Rd\{0} → (0,∞) of order β > 0 (for H
the relation H(λz) = λβH(z) holds for all λ > 0 and z ∈ Rd) and function
w : R → R is positive and continuous. Then the condition (6) for the c.d.f.
(1) holds and the value of the tail index α is equal to α = d/β.

Proof of this result and many generalizations can be found in []. Two
important particular cases of (8) are:

• let f(·) be twice continuously differentiable in the vicinity of x∗, ∇f(x∗) =
0 (here ∇f(x∗) is the gradient of f(·) in x∗) and the Hessian ∇2f(x∗) of
f(·) at x∗ is nondegenerate; in this case, we can take

w(·) = 1, H(z) = −z′[∇2f(x∗)]z ,

which implies β = 2 and α = d/2;
• let all components of ∇f(x∗) are finite and non-zero which often happens

if the global minimum of f(·) is achieved at the boundary of A. Then we
may take H(z) = z′∇f(x∗), w(·) = 1; this gives β = 1 and α = d.

The quantity κn−m, where m = ess inf η and κn is the (1/n)-quantile
of F (·), enters many formulae below and therefore its asymptotic behaviour
is very important. Fortunately, the asymptotic behaviour of κn−m is clear.
Indeed, as soon as (6) holds with some c0, we have

1
n

= F (κn) ∼ c0 (κn −m)α as n →∞

implying

(κn −m) ∼ (c0n)−1/α as n →∞ . (9)

3 Defining the Estimators

Let Yn = {y1, . . . , yn} be an independent sample of values from the c.d.f. (1)
and y1,n ≤ . . . ≤ yn,n be the corresponding order statistics. In this section we
define six estimators of m that will be numerically studied below.

For constructing the estimators of m, only the first k order statistics
{y1,n, . . . , yk,n} will be used (here k is much smaller than n). There are two
major reasons for this: (a) the higher order statistics contain very little in-
formation about m; and (b) we can use the limit theorem for extreme order
statistics (Theorem 1) only if k is such that k/n → 0 as n →∞.

The estimators rely on the assumption that the c.d.f. F (·) satisfies the
condition (6) with known value of the tail index α.
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3.1 Maximum Likelihood Estimator

In defining the maximum likelihood estimator (MLE) we have to assume the
condition (7) which is stronger than (6). Additionally, we have to assume
α ≥ 2 (numerical study shows that the MLE as defined below coincides with
the minimum order statistic y1,n for α < 2).

Taking the asymptotic form of the likelihood function as exact (for details
see Hall , Zh ), we obtain that the maximum likelihood estimator of the
minimum, m̂∗, is the solution in z to the following likelihood equation:

(α− 1)
k−1∑

j=1

(yk,n − yj,n)
(yj,n − z)

= k (10)

conditionally z < y1,n; if there are no solution to this equation for z < {y1,n,
then we set m̂∗ = y1,n; if there are more than one solution in the region
z ∈ (−∞, y1,n), then we take the smallest of these solutions.

If the conditions (7), α ≥ 2, k → ∞, k/n → 0 (as n → ∞) are satisfied
then the maximum likelihood estimators of m are asymptotically normal and
asymptotically efficient in the class of asymptotically normal estimators and
their mean square error E(m̂−m)2 is asymptotically

E(m̂−m)2 ∼
{

(1− 2
α )(κn −m)2 k−1+2/α for α > 2,

(κn −m)2 log k for α = 2 .
(11)

3.2 Linear Estimators

We will now define five different linear estimators.
A general linear estimator of m can be written as

m̂n,k(a) =
k∑

i=1

aiyi,n , (12)

where a = (a1, . . . , ak)′ ∈ Rk is a vector of coefficients. It can be shown (see
Zh .... ) that as n →∞ we have

Em̂n,k(a) = m

k∑

i=1

ai−(κn−m)a′b + o(κn−m) = m

k∑

i=1

ai + o(1) . (13)

Here b = (b1, . . . bk)′ ∈ Rk, where bi = Γ (i + 1/α) / Γ (i).
From (13) it is clear that (as the objective function f is bounded and there-

fore the variances of all yi,n are finite), a necessary and sufficient condition
for an estimator with vector of coefficients a to be consistent is:

k∑

i=1

ai = 1 . (14)
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Additionally, to ensure a small bias we may require

k∑

i=1

aibi = 0 . (15)

The main criteria is to ensure minimization of the mean square error given by

E(m̂n,k(a)−m)2 ∼ (κn−m)2 a′Λa, n →∞ , (16)

where Λ = ‖λij‖k
i,j=1 is a symmetric k×k-matrix with elements λij defined

for i ≥ j by the formula

λij =
Γ (i+2/α)Γ (j+1/α)

Γ (i+1/α)Γ (j)
.

Optimal linear estimator

The r.h.s. of (16) is a natural optimality criterion for selecting the vector a.
The optimal consistent estimator m◦ = m̂n,k(a◦), we shall call it the optimal
linear estimator, is determined by the vector of coefficients

a◦ = arg min
a:a′1=1

a′Λa =
Λ−11

1′Λ−11
. (17)

The estimator m◦ has been suggested in Cooke (1979), where the form (17)
for the vector of coefficients was obtained. Solving the quadratic programming
problem in (17) is straightforward. In the process of doing that, we obtain

min
a:a′1=1

a′Λa = (a∗)′Λa∗ = 1/1′Λ−11 . (18)

Lemma 7.3.4 in Zhigljavsky (1991) gives the following expression for the r.h.s.
of (18):

1′Λ−11 =

{
1

α−2

(
αΓ (k+1)
Γ (k+2/α) − 2

Γ (1+2/α)

)
for α 6= 2,

∑k
i=1 1/i for α = 2 ;

(19)

this expression is valid for all α > 0 and k = 1, 2, . . .
The components a◦i (i = 1, . . . , k) of the vector a◦ can be evaluated ex-

plicitely: a◦i = ui/1′Λ−11 for i = 1, . . . , k with

u1 = (α + 1) / Γ (1 + 2/α),
ui = (α− 1)Γ (i)/Γ (i + 2/α) for i = 2, . . . , k − 1,
uk =−(αk−α+1)Γ (k) /Γ (k + 2/α).

Deriving this expression for the coefficients of the vector a◦ is far from trivial,
see Zhigljavsky (1991), Section 7.3.3.

The asymptotic properties of the optimal linear estimators coincide with
the properties of the maximum likelihood estimators and hold under the same



INTRODUCTION 7

regularity conditions (we again refer to Zhigljavsky (1991), Section 7.3.3). In
particular, the optimal linear estimators m◦ = m̂n,k(a◦) of m are asymptoti-
cally normal and their mean square error E(m◦−m)2 asymptotically behaves
like the r.h.s. of (11). Unlike the MLE, this estimator is defined for all α > 0
and indeed behaves well for small α, see below.

Second optimal linear estimator

The second linear estimator (suggested in Cooke (1980)) satisfies the condi-
tions (14) and (15): that is, the consistency and unbiasedness conditions. The
coefficients of this estimator are:

a4 = arg min
a : a′1=1,

a′b=0

a′Λa =
Λ−11− (b′Λ−11)Λ−1b/(b′Λ−1b)
1′Λ−11− (b′Λ−11)2/(b′Λ−1b)

(20)

Asymptotic properties of the estimator m4 = m̂(a4) (when α ≥ 2, n →
∞, k → ∞ and k/n → 0) are the same as the asymptotic properties of the
MLE and the estimator m◦.

Csörgö-Mason estimator

The Csörgö-Mason estimator is linear consistent and has similar asymptotic
properties to the maximum likelihood estimator and the first two linear esti-

mators. It is defined by the vector of coefficients a
¤

=
(
a

¤
1 , . . . , a

¤
n

)′
, where

a
¤
i =





vi for α > 2, i = 1, . . . , k − 1
vk + 2− α for α > 2, i = k

2/ log(k) for α = 2, i = 1
log(1 + 1/i)/ log(k) for α = 2, i = 2, . . . , k − 1
(log(1 + 1/k)− 2) / log(k) for α = 2, i = k

with

vj = (α− 1)k2/α−1
(
j1−2/α − (j − 1)1−2/α

)
.

For all α ≥ 2, the asymptotic properties of the estimators m4 = m̂(a4)
and m

¤
= m̂(a

¤
), when n → ∞, k → ∞ and k/n → 0, coincide with the

asymptotic properties of the MLE and the estimator m◦.

A practical linear estimator

For practical purposes the following estimator m¯ = m̂(a¯) is useful:

a¯ = ((1 + Ck), 0, . . . , 0,−Ck)′ (21)

where Ck = b1/(bk − b1) is found from the unbiasedness condition a′b = 0. A
similar estimator was proposed by Van der Waat (1980).
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Minimum order statistic

The simplest estimator that can be used is the minimum order statistic, m• =
m̂(a•) = y1,n. This means that

a• = (1, 0, . . . , 0)′.

4 Comparison of estimators in finite samples

In this section we make a comparison of the efficiency and bias for the max-
imum likelihood and linear estimators of the finite global minimum m given
finite samples of size n = 500 drawn from the Weibull distribution with prob-
ability distribution function

f(x) = αxα−1 exp {−xα} , x ≥ 0. (22)

The values of α considered when sampling from the Weibull distribution will
be α ∈ {2, 3, 5} and the parameter k for the number of order statistics used
in the computation of estimators will be k ≤ 20. Note that the c.d.f. of
the Weibull distribution can be represented in the form of (7) since F (t) =
1− exp {−tα} = (t− 0)α + O((t− 0)α).

Efficiency of Linear Estimators

By definition, the optimal linear estimator m̂n,k(a◦), with a◦ given by (??),
provides the lowest mean square error in the class of all linear consistent
estimators as n →∞. The asymptotic mean square error for m◦ is

lim
N→∞

Var(m◦) =
(κn −m)2

1′Λ−11
, n →∞. (23)

Fig. 1 shows the efficiency,
[
κ2

n/(1′Λ−11)
]
/

[
1
R

∑R
i=1(m̂i −m)2

]
, of the

maximum likelihood estimator, the consistent linear estimators and the min-
imum order statistic for α=1, 2, 5 and 10 against different values of k. The
efficiency is based on taking R = 10, 000 estimators of m̂i, where each m̂i is
estimated from a sample of size n = 100. Since we consider finite samples, it
is possible for the efficiency to be greater than 1. Fig. 1 clearly shows that
the mean square error of the m̂100,k(a◦) estimator converges to the asymp-
totic mean square error given by (23) for α=1, 2, 5 and 10. The estimator
m̂100,k(a◦) clearly provides the lowest mean square error in the class of es-
timators considered. The efficiency of the minimum order statistic decreases
monotonically as k → ∞, this is because the mean square error of the mini-
mum order statistic is independent of k, where as the mean square error of the
consistent linear estimator m̂100,k(a◦) decreases as k increases. The efficiency
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of the m̂500,k(aM) estimator increases monotonically as k increases until k be-
comes too large, when the estimator begins to decrease. When the value of n is
increased this decreasing in m̂500,k(aM) does not occur until k > 20. The effi-
ciencies of the minimum order statistic and the m̂n,k(a4) estimators are equal
for k = 2. This can be verified by considering the asymptotic mean square
errors (as n → ∞) of these two estimators at this point. Both of which are
approximately (κn−m)2Γ (1+2/α)) as n →∞. Estimators m◦ and m̂n,k(a4)
become more similar in efficiency as α →∞.
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Comparison of estimators for fixed sample size

Efficiency n = 100

MLE (· · · ) m◦ (◦) mM (M) m
¤

(¤) m• (•)

α = 1 α = 2

α = 5 α = 10

Fig. 1. Efficiency,
�
κ2

n/(1′Λ−11)
�
/
h

1
R

PR
i=1(m̂i −m)2

i
, of different estimators for

sample size n = 100 and α = 1, 2, 5 and 10 against k.
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Bias n = 100

MLE (· · · ) m◦ (◦) mM (M) m
¤

(¤) m• (•)

α = 1 α = 2

α = 5 α = 10

Fig. 2. Bias, 1
R

PR
i=1 |n(1/α)(m̂i −m)| , of different estimators for sample size n =

100 and α = 1, 2, 5 and 10 against k.
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Comparison of estimators for varying sample sizes

— n = 100 · · · n = 500 - - - n = 1000

Efficiency α = 1

m◦ mM

Fig. 3. Efficiency,
�
κ2

n/(1′Λ−11)
�
/
h

1
R

PR
i=1(m̂i −m)2

i
, of different estimators for

α = 1 and sample sizes n = 100, 500, 1000 against k.

Bias α = 1
m◦ mM

Fig. 4. Bias, 1
R

PR
i=1 |n1/α(m̂i −m)| , of different estimators for α = 1 and sample

sizes n = 100, 500, 1000 against k.
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Efficiency α = 2

— n = 100 · · · n = 500 - - - n = 1000

MLE m◦

m4
m

¤

Fig. 5. Efficiency,
�
κ2

n/(1′Λ−11)
�
/
h

1
R

PR
i=1(m̂i −m)2

i
, of different estimators for

α = 2 and sample sizes n = 100, 500, 1000 against k.
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Bias α = 2

— n = 100 · · · n = 500 - - - n = 1000

MLE m◦

m4
m

¤

Fig. 6. Bias, 1
R

PR
i=1 |n1/α(m̂i −m)| , of different estimators for α = 2 and sample

sizes n = 100, 500, 1000 against k.
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Histograms n = 500 α = 1

m◦, k = 2 m4, k = 2

m◦, k = 5 m4, k = 5

m◦, k = 10 m4, k = 10

Fig. 7. Histograms of the normalized estimators n(1/α)(m̂i −m), i = 1 . . . R, R =
10,000 , plotted with a normal probability density function whose parameters are
taken from the sample.
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Histograms n = 500 α = 2 k = 2

MLE m◦

m4
m

¤

Fig. 8. Histograms of the normalized estimators n(1/α)(m̂i −m), i = 1 . . . R, R =
10,000 , plotted with a normal probability density function whose parameters are
taken from the sample.
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Histograms n = 500 α = 2 k = 5

MLE m◦

m4
m

¤

Fig. 9. Histograms of the normalized estimators n(1/α)(m̂i −m), i = 1 . . . R, R =
10,000 , plotted with a normal probability density function whose parameters are
taken from the sample.



18 E. Hamilton, V. Savani, A. Zhigljavsky

α = 2

MLE (· · · ) m◦ (◦) mM (M) m
¤

(¤) m• (•)

k = 2 Smoothed lines: k = 2

k = 5 Smoothed lines: k = 5

Fig. 10. Scatter plots showing R = 10, 000 points of n(1/α)(m̂i − m) for each
estimator. For every fixed n, values of the maximum likelihood estimator and linear
estimators are plotted. Graphs on the right hand side show the cubic regression lines
for each estimator, calculated from the 10,000 points.
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α = 5

MLE (· · · ) m◦ (◦) mM (M) m
¤

(¤) m• (•)

k = 2 Smoothed lines: k = 2

k = 5 Smoothed lines: k = 5

Fig. 11. Scatter plots showing R = 10, 000 points of n(1/α)(m̂i − m) for each
estimator. For every fixed n, values of the maximum likelihood estimator and linear
estimators are plotted. Graphs on the right hand side show the cubic regression lines
for each estimator, calculated from the 10,000 points.
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α = 10

MLE (· · · ) m◦ (◦) mM (M) m
¤

(¤) m• (•)

k = 2 Smoothed lines: k = 2

k = 5 Smoothed lines: k = 5

Fig. 12. Scatter plots showing R = 10, 000 points of n(1/α)(m̂i − m) for each
estimator. For every fixed n, values of the maximum likelihood estimator and linear
estimators are plotted. Graphs on the right hand side show the cubic regression lines
for each estimator, calculated from the 10,000 points.
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Scatter plots

α = 2, k = 2 α = 2, k = 10

α = 5, k = 2 α = 5, k = 10

Fig. 13. Scatter plots showing R = 10, 000 points of n(1/α)(m̂i − m) for (MLE)
plotted against the optimal linear estimator m̂n,k(a◦), (OPT1).
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