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is indexed by a real parameter and contains two algorithms considered previously as
special cases. Numerical results are provided to demonstrate the efficiency of the proposed
methods. Finally, several extensions to other optimality criteria are discussed.
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1. Introduction

Consider the common linear regression model

y = θTu+ ε, (1)

where θ = (θ0, . . . , θm−1)T ∈ Rm is a vector of unknown parameters, u denotes the vector of explanatory variables and ε is
a random error. We assume thatU = {u1, . . . , un} ⊂ Rm is a finite design space (a generalization to arbitrary design spaces
is straightforward, see Remark 4 in Section 2) and that different observations are uncorrelated; the mean and variance of
the errors are 0 and σ 2 > 0, respectively. Following Kiefer (1974) we call any probability measure ξ on U a design. If N
observations can be taken and the design ξ puts masses w1, . . . , wn at the points u1, . . . , un, then a rounding procedure is
applied to obtain integers ni ≈ wiN with

∑n
j=1 ni = N , and the experimenter takes approximately ni observations at each

ui (i = 1, . . . , n) [see Pukelsheim and Rieder (1992) for more details and some references]. For a design ξ , the information
matrix in the model (1) is defined by

M(ξ) =
n∑
i=1

wiuiuTi ,

and its inverse is approximately proportional to the covariance matrix of the least squares estimate for the parameter
θ . An optimal design maximizes an appropriate function of the information matrix [see e.g. Silvey (1980) or Pukelsheim
(1993)]. Numerous optimality criteria have been proposed in the literature to discriminate between competing designs. In
the present paper wemainly consider theD-optimality criterion, which determines the design ξ ∗ such that the determinant
|M(ξ)| is maximal. Such a design minimizes the volume of the ellipsoid of concentration for the vector θ of unknown
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parameters. Inmost cases of practical interest,D-optimal designs have to be determined numerically and several algorithms
have been proposed in the literature for computing D-optimal designs [see e.g. Fedorov (1972), Wynn (1972), Silvey (1980),
Pázman (1986) or the recent papers of Harman and Pronzato (2007), Mandal and Torsney (2006)].
In the present paper we concentrate on a class of multiplicative algorithms for computing D-optimal designs, which is

indexed by real parameters, say βr . For two special choices of the indexes βr the algorithms are related to two algorithms
proposed by Titterington (1976, 1978) and Silvey et al. (1978). In Section 2 we prove that the sequence of determinants
of the corresponding designs is nondecreasing, and as a consequence the sequence of calculated designs converges to the
D-optimal design. The monotonicity result uses particular thresholds in each step of the iterations, and some bounds for
these thresholds are derived in Section 3. Some results of numerical comparisons are given in Section 4. In Section 5, some
applications of multiplicative algorithms to the construction of optimal designs with respect to other optimality criteria are
considered.

2. A class of multiplicative algorithms for calculating D-optimal designs

Let w(0)1 , . . . , w
(0)
n denote a set of given initial weights for the design points u1, . . . , un, which defines the initial design

ξ (0). For a design ξ with weightswi at the points ui, we define

d(ui, ξ) =
∂

∂wi
log detM(ξ) = uTiM

−1(ξ)ui (i = 1, . . . , n).

Westudy the class ofmultiplicative algorithms for calculatingD-optimal designswhich is defined recursively by updating
the weights in each step as follows:

w
(r+1)
i = w

(r)
i
d(ui, ξ (r))− βr
m− βr

, βr ∈ R. (2)

Here r = 0, 1, . . . is the iteration number and βr (r = 0, 1, . . .) are real-valued parameters that can vary in each iteration.
For an initial design ξ (0), the iterations (2) produce a sequence of designs {ξ (r)}r=0,1,....
The choices of constants βr = 0 and βr = 1 in algorithm (2) give two procedures considered by Titterington (1976,

1978), who discussed a special case of model (1), where the first component of the vector u in the regression model (1) is
constant, i.e. u = (1, vT)T, v ∈ Rm−1. This author established that in the case βr = 0 algorithm (2) yields a sequence of
determinants {detM(ξ (r))}, which is nondecreasing and converges to the D-optimal design. A more detailed proof of the
same result is given by Pázman (1986). Based on numerical experiments Silvey et al. (1978) and Titterington (1976, 1978)
noticed that for βr = 1 the algorithm converges substantially faster than for βr = 0 and conjectured that the sequence of
determinants for algorithm (2) with βr = 1 is also nondecreasing. There is a vast literature where the rates of convergence
of algorithm (2) with βr ∈ {0, 1} and related algorithms are numerically studied and the monotonicity conjecture for the
case of βr = 1 is numerically verified, see e.g. Pázman (1986), Pukelsheim and Torsney (1991), Torsney and Mandal (2001),
Pronzato (2003), Harman and Pronzato (2007), Torsney (2007) and Pronzato et al. (2000), p.155.
Theorem 1 does not give a proof of the monotonicity conjecture in the case βr = 1, but establishes the monotonicity of

the determinants {detM(ξ (r))} for certain positive values of βr . For a precise formulation of the statement, we define for the
design ξ (r) in the rth step the quantity

β(r) = min
ui∈U

d(ui, ξ (r)),

which turns out to be essential in the following discussion. Note that we must always have βr ≤ β(r) as otherwise at least
one weight in the updated design ξ (r+1) becomes negative.

Theorem 1. Let {ξ (r)}r=0,1,... be a sequence of designs obtained by the recurrent formula (2), where in the rth step the parameter
βr is chosen as any number such that

−∞ < βr ≤ β
(r)/2, (3)

then the sequence of determinants {detM(ξ (r))}r=0,1,... is nondecreasing and the sequence of designs {ξ (r)} converges to the D-
optimal design ξ ∗.

The proof (generalizing the proof of Pázman (1986) valid for βr = 0) is based on several auxiliary lemmas.

Lemma 1. Let ζ1, . . . , ζm be i.i.d. random variables with values in U = {u1, . . . , un} and let α be some positive constant. Let
also g : Um

→ [0,∞) denote a function such that E(g|ζi) ≥ 2α a.s. (almost surely), where g = g(ζ1, . . . , ζm). Then

E(g)[E(g)− α]m ≤ E

[
g
m∏
i=1

(E(g|ζi)− α)

]
and the equality is strict unless E(g|ζ1) = · · · = E(g|ζm) = E(g) a.s.
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Lemma 2. Let h : Um
→ R be the function defined by

h(z1, . . . , zm) =
1
m!
det2 F(z1, . . . , zm), (4)

where zi ∈ U (i = 1, . . . ,m) and ith column of the matrix F(z1, . . . , zm) equals zi. Then, for a design with weights w1, . . . , wn
at the points u1, . . . , un, the determinant of the information matrix M(ξ) =

∑n
i=1wiuiu

T
i can be represented as

detM(ξ) = E h(ζ1, . . . , ζm) =
n∑
i1=1

. . .

n∑
im=1

wi1 · · ·wimh(ui1 , . . . , uim), (5)

where ζ1, . . . , ζm are i.i.d. random variables with distribution ξ .

Lemma 3. For any β ∈ R (β 6= m), any u ∈ U and any j (1 ≤ j ≤ m) we have

d(u, ξ)− β
m− β

=
E h(ζ uj )− α

E h(ζ )− α

where ζ = (ζ1, . . . , ζm), ζ uj = (ζ1, . . . , ζj−1, u, ζj+1, . . . , ζm), α = βE h(ζ )/m, h(·) is defined in (4) and ζ1, . . . , ζm are (as in
Lemmas 1 and 2) i.i.d. random variables with distribution ξ .

Proof of Lemma 1. From the inequality t − 1 ≥ log(t)we obtain
m∏
i=1

E(g|ζi)− α
E(g)− α

− 1 ≥
m∑
i=1

[log(E(g|ζi)− α)− log(E(g)− α)] a. s.

Multiplying both sides by g and taking the expectation we obtain

E

{
g
m∏
i=1

E(g|ζi)− α
E(g)− α

}
− E(g) ≥

m∑
i=1

[E(g log(E(g|ζi)− α))− E(g) log(E(g)− α)]

=

m∑
i=1

[E[E(g|ζi) log(E(g|ζi)− α)] − E(g) log(E(g)− α)] ≥ 0.

The last inequality follows from Jensen’s inequality Eφ(t) ≥ φ(E(t))with the strictly convex function φ(t) = t log(t − α),
t ∈ [2α,∞). �

Proof of Lemma 2. This is a consequence of the Binet–Cauchy formula [see Gantmacher (1959), page 9]. �

Proof of Lemma 3. By the definition, for any j (1 ≤ j ≤ m) and u = ui ∈ Uwe have

d(ui, ξ) =
∂ log detM(ξ)

∂wi
=

1
detM(ξ)

∂ detM(ξ)
∂wi

=
mE h(ζ uij )

E h(ζ )
,

where we have used (5). Therefore

d(u, ξ)
m
=
E h(ζ uj )

E h(ζ )
,

which yields

d(u, ξ)− β
m− β

=
d(u, ξ)/m− β/m

1− β/m
=
E h(ζ uj )− α

E h(ζ )− α

where α = βE h(ζ )/m. �

Proof of Theorem 1. Let ζ1, . . . , ζm be i.i.d. random variables with distribution ξ (r), h = h(ζ1, . . . , ζm), where the function
h is defined in (4), and α = βrE h/m. Note that E h(ζ uj ) = E (h(ζ )|ζj = u) and that (3) implies E(h|ζi) ≥ 2α a.s. The last
inequality allows us to apply Lemma 1 with g = h. Lemmas 1 and 3 yield

detM(ξ (r+1)) = E

{
h
m∏
i=1

E(h|ζi)− α
E h− α

}
≥ E h = detM(ξ (r)). (6)

Note that to obtain the left equality in (6) we have used formulae (5) and (2). The inequality (6) becomes equality if and only
if ξ (r+1) = ξ (r) a.s.
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This proves the monotonicity result. To prove convergence of the sequence {ξ (r)} to ξ ∗ we use standard arguments, see
e.g. Pázman (1986, p. 142).
Since the sequence {ξ (r)} is bounded, there is at least one limiting point of {ξ (r)}. Moreover, in view of themonotonicity of

the sequence {detM(ξ (r))} all limiting points of {ξ (r)} have the same determinant of the information matrix which is equal
to limr detM(ξ (r)). Let {ξ (rj)} be a subsequence of the sequence {ξ (r)} converging to some design ξ̄ . Let {ξ (rjs−1)} also be a
subsequence of {ξ (rj−1)} converging to a design ξ̃ . Denote by T the mapping defined by ξ (r) = Tξ (r−1). From (2) we obtain
that T ξ̃ = ξ̄ . Using the facts that detM(ξ̄ ) = detM(ξ̃ ) and that inequality (6) is equality if and only if ξ (r+1) = ξ (r) a.s., we
obtain ξ̄ = T ξ̃ = ξ̃ . The equivalence theorem (Kiefer andWolfowitz, 1960) now implies that ξ̄ is the D-optimal design as it
is a unique fixed point of mapping T . �

Remark 1 (Sharpness of the Main Result). Theorem 1 is sharp in the following sense. If we consider algorithm (2) with
βr = γ β

(r) and fixed γ , then γ ∗ = 1
2 is the largest possible value of γ such that algorithm (2) yields a monotonic sequence

of determinants {detM(ξ (r))} for any regression model, anyU and any initial design (note that for some models and some
initial designs the value of γ can be increased, see below).
Indeed, consider the regression model y = θTu+ ε, whereU={u0, u1} = {(1, 0)T, (1, 1)T}, and let the weights of a two-

point design ξ (0) bew0 = 1
2 + ε andw1 =

1
2 − ε for some small ε > 0. Assume that βr = (

1
2 + δ)β

(r) for some small δ > 0.
It is easy to compute

detM(ξ (1))− detM(ξ (0)) =
8ε2(1+ 2ε)
(1+ 4ε − 2δ)2

(ε − δ)

which is negative if δ > ε.

Remark 2 (Regression Model with Intercept). Consider the regression model with intercept, where

u = (1, vT)T, v ∈ Rm−1.

It is easy to show [see Titterington (1978)] that in this case the function d(ui, ξ) can be written as d(ui, ξ) = dc(vi, ξ)+ 1,
where

dc(vi, ξ) = (vi − v̄)TM−1c (vi − v̄), (7)

Mc =
n∑
i=1

wi(vi − v̄)(vi − v̄)
T, v̄ =

n∑
i=1

wivi.

Therefore, d(ui, ξ) ≥ 1 for any ui ∈ U. As a consequence of Theorem 1, the algorithm in the model with intercept is
monotonic for any βr ≤ 1

2 . Note that for somemodels and designs ξ
(r), the values of βr = β(r)/2may bemuch larger than 1.

Remark 3 (Minimal Volume Ellipsoids). As demonstrated by many authors [see e.g. Titterington (1975, 1978) and Pronzato
(2003) the multiplicative algorithms for finding D-optimal designs play an important role in the construction of a minimal
volume ellipsoid containing a set of points

V = {v1, . . . , vn} ∈ Rm−1. (8)

Indeed, let the data set consists of the points (8). Then the minimal covering ellipsoid for the set V is of the form

E(V) = {v : dc(v, ξ) ≤ m− 1}

where dc(v, ξ) is defined in (7). In other terms this ellipsoid has the form

{u : d(u, ξ) ≤ m}.

By the equivalence theory of Kiefer and Wolfowitz (1960) we have that the point vi has a positive weight wi only if it lies
on the surface of the ellipsoid E(V). Thus, the points that lie on the surface of the minimal volume ellipsoid can be found
from the solution of the D-optimal design problem on a finite set. Therefore, the algorithms whose convergence have been
established in Theorem 1 can be considered as algorithms for the construction of the minimal volume ellipsoids containing
given sets of points. As illustrated below on some numerical examples, these algorithmsmay havemuch faster convergence
than the algorithms considered in Titterington (1976, 1978).

Remark 4 (Arbitrary Design Space). In the case of an arbitrary (i.e. not necessarily discrete) design space U, algorithm (2)
becomes

dξ (r+1)(u) =
d(u, ξ (r))− βr
m− βr

dξ (r)(u), βr ∈ R, u ∈ U. (9)

In particular, if the initial design ξ (0) has a density, then all designs ξ (r) have densities pr(u), that is dξ (r)(u) = pr(u)du, and
the updating formula (9) has the form
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pr+1(u) =
d(u, ξ (r))− βr
m− βr

pr(u), βr ∈ R, u ∈ U.

Theorem 1 can be generalized to establish monotonicity of determinants for iterations (9).

3. A lower bound for the function d

In this section we derive a lower bound for the function d. Recall the definition of the Elfving set corresponding to the
linear regression model (1), i.e.

G = conv{u1, . . . , un,−u1, . . . ,−un}

[see Elfving (1952) or Pukelsheim (1993)], where conv(A) denotes the convex hull of a set A. Note that G is a nonempty
convex set containing the origin if there are m linearly independent vectors among u1, . . . , un. For a vector u ∈ Rm \ {0},
define γu as the positive number such that the scaled vector γuu is a boundary point of G. Note that γu is uniquely defined
and γu ≥ 1 for any u ∈ G. Define also

β∗ = min
u∈U

1
γ 2u
.

Theorem 2. For any model (1), we have
(i) β∗ ≤ d(u, ξ) for any u ∈ U and any ξ ;
(ii) 0 ≤ β∗ ≤ 1;
(iii) β∗ = 1 if and only if all ui ∈ U belong to the boundary of the Elfving set for U.

Proof of Theorem 2. For any u ∈ Rm \ {0}, let ξ ∗u be a c-optimal design (for the vector c = u). Then it follows from the
optimality of the design ξ ∗u that for any u ∈ U and any design ξ such that cTθ is estimable

d(u, ξ) = uTM−(ξ)u ≥ uTM−(ξ ∗u )u,

where A− denotes a generalized inverse of the matrix A. Moreover, the right-hand side of this inequality is known
(Pukelsheim, 1993) to be

uTM−(ξ ∗u )u =
1
γ 2u
.

This proves assertion (i). Assertion (ii) follows from the definition of β∗ and the fact that γu ≥ 1 for any u ∈ U. For a given
u ∈ U, γu = 1 if u is a boundary point of the Elfving set G. Therefore, β∗ = 1 if and only if all ui ∈ U are boundary points of
G, which proves (iii). �

Remark 5 (Model with Intercept). For models with a constant term we always have β∗ = 1 as all points ui = (1, vTi )
T are

located at the boundary of the corresponding Elfving set.

4. Numerical comparisons

In this section, we present a few numerical comparisons of the algorithms.We discuss the performance of the algorithms
for several polynomial, exponential and rational regression models. To be precise, we consider the regression model

Y = θTf (x)+ ε,

where f (x) = (f0(x), . . . fm−1(x))T is the vector of regression functions and the explanatory variable x varies in a finite set,
sayX = {x1, . . . , xn}. In this case, we haveU = {f (x1), . . . , f (xn)} and the regression model can be written in the form (1)
with u = f (x). For the polynomial regression model we choose

f (x) = (1, x, . . . , xm−1)T, m = 3, 4, 5, 6,

while the exponential and rational models are given by

f (x) = (1, e−x, xe−x)T,
f (x) = (e−x, xe−x, e−2x, xe−2x)T,
f (x) = (1, e−x, xe−x, e−2x, xe−2x)T,
f (x) = (1, 1/(1+ x), 1/(1+ x)2)T.

We consider two design spaces that correspond to Tables 1 and 2, respectively. Specifically, we consider

X1 = {4i/19 | i = 0, . . . , 19} and X2 = {4i/39 | i = 0, . . . , 39}.
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Table 1
The number of iterations required to achieve precision (10) by algorithm (2) with parameters βr = γ β(r) and by Titterington’s algorithmwith βr = 1. The
initial design ξ (0) is a uniform distribution on the setX1 = {4i/19 | i = 0, . . . , 19}.

Algorithm (2) with βr = γ β(r) βr = 1
γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(1, x, x2) 104 97 91 84 78 71 65 58 69
(1, x, x2, x3) 130 121 113 104 96 88 79 71 98
(1, x, . . . , x4) 82 77 72 67 61 56 51 45 66
(1, x, . . . , x5) 96 89 82 75 68 61 53 80
(1, e−x, xe−x) 131 123 115 108 100 92 84 76 90
(1, 1/(1+ x), 1/(1+ x)2) 105 98 92 85 79 73 66 60 71
(e−x, xe−x, e−2x, xe−2x) 221 208 196 183 170 158 145 133 167
(1, e−x, xe−x, e−2x, xe−2x) 136 127 118 109 100 91 83 74 109

Table 2
The number of iterations required to achieve precision (10) by algorithm (2) with parameters βr = γ β(r) and by Titterington’s algorithmwith βr = 1. The
initial design ξ (0) is a uniform distribution on the setX2 = {4i/39 | i = 0, . . . , 39}.

Algorithm (2) with βr = γ β(r) βr = 1
γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(1, x, x2) 250 235 219 204 188 172 157 141 167
(1, x, x2, x3) 329 308 287 266 244 223 202 181 247
(1, x, . . . , x4) 235 219 204 188 173 157 142 127 188
(1, x, . . . , x5) 281 262 244 226 207 189 170 152 234
(1, e−x, xe−x) 294 276 258 239 221 202 184 166 197
(1, 1/(1+ x), 1/(1+ x)2) 136 128 120 111 103 94 86 77 91
(e−x, xe−x, e−2x, xe−2x) 404 382 359 337 314 291 269 246 224 304
(1, e−x, xe−x, e−2x, xe−2x) 213 199 185 171 157 143 130 116 171

In all cases a uniform distribution on the design spaceXwas used as starting design ξ (0), and the iterations of algorithm
(2) were performed until the precision

max
i=1,...,n

d(ui, ξ (r)) ≤ 1.001m (10)

was reached. Note that the expression m/maxni=1 d(ui, ξ
(r)) provides a lower point for the D-efficiency of the design ξ (r)

[see Dette (1996)]. Thus with this stopping rule the D-efficiency of the design ξ (r) is at least (1.001)−1 and other constants
would give different lower bounds for the D-efficiency. In Tables 1 and 2 we present the number of iterations required
to reach this precision by algorithm (2) with βr = γ β(r), for various values of γ . The tables also contain the results for
Titterington’s algorithm, which uses constant parameter βr = 1 (see the right columns in the tables). The empty space in
the table indicates that the corresponding algorithm did not converge to the optimal design (note that the convergence is
only proved for γ ≤ 0.5).
Both tables show very similar results. The performance of algorithm (2) is improved if larger values are used for the

parameter γ . The worst case corresponds to the choice βr = 0, and this is improved by all other methods. If γ is small, the
algorithm with βr = 1 is still better than the method proposed in this paper. However this picture is changing if values
γ ≥ 0.5 are used in the procedure. Note that it follows from the proof of Theorem 1 that the sequence of determinants
generated by algorithm (2) may still be nondecreasing for values of βr , which are slightly larger than β(r)/2 and for this
reason our numerical comparison also includes the cases γ = 0.6, 0.7 and 0.8 (see Tables 1 and 2). If γ ≥ 0.5, the algorithm
(2) is at least comparable to the case βr = 1, and in many cases it yields a substantially smaller number of iterations for
achieving the desired precision. Since in practical computation we can not risk to use the algorithm with γ > 0.5, we
recommend the choice γ = 0.5.
Note that although the algorithm with βr = γ β(r) requires certain time for the calculation of the minimum β(r) =

mini d(ui, ξ (r)) (compared with the algorithms which use βr = 0 and βr = 1), this time is typically a very small part of the
total time needed to perform an iteration. Note also that the convergence of the algorithm with βr = 1 is still not proved.
We finally mention that a further improvement of the rate of convergence of the algorithm can be obtained if nonoptimal
points are removed at each iteration using the rule developed in Harman and Pronzato (2007).

5. Other optimality criteria

5.1. Bayesian D-optimal designs

In this section we briefly discuss an extension of the multiplicative algorithm to the Bayesian D-optimal design problem.
To be precise, consider the nonlinear regression model

Y = η(x, θ)+ ε,
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Table 3
The number of iterations required to achieve precision (12) by algorithm (11) with parameters βr = γ β(r) and distribution {0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3;
1/7, . . . , 1/7}with respect to parameter θ2 . The initial design ξ (0) is a uniform distribution on the setX3 = {3i/19 | i = 0, . . . , 19}.

Algorithm (11) with βr = γ β(r) βr = 1
γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

θ1 + θ3e−θ2x 178 167 156 145 133 122 111 100 120
θ1 + θ3/(θ2 + x) 147 138 129 120 110 101 92 83 98
θ1e−θ2x + θ3e−2x + θ4e−2x 322 296 270 244 218 192 165 242
θ1 + θ3e−θ2x + θ4e−2x + θ5e−2x 101 95 88 81 75 68 61 55 81

where η is a known function, θ ∈ Θ ⊂ Rm denotes the unknown parameter and the explanatory variable x varies in the
finite design spaceX = {x1, . . . , xn}. Under the assumption of a normally distributed homoscedastic error it was shown by
Jennrich (1969) that asymptotically the covariance matrix of the least squares estimate for the parameter θ is proportional
to the matrixM−1(ξ , θ), where ξ is the given design,

M(ξ , θ) =
∫

X

f (x, θ)f T(x, θ)dξ(x),

and f (x, θ) = ∂
∂θ
η(x, θ) is the gradient of η with respect to θ . A Bayesian D-optimal design maximizes

Φπ (ξ) =

∫
Θ

log detM(ξ , θ)π(dθ)

where π denotes a given prior distribution on the parameter spaceΘ [see e.g. Chaloner and Larntz (1989) or Chaloner and
Verdinelli (1995)]. Define

dπ (x, ξ) =
∫
Θ

f T(x, θ)M−1(ξ , θ)f (x, θ)π(dθ)

and note that a design ξ ∗ is Bayesian D-optimal if and only if the inequality

dπ (x, ξ ∗) ≤ m

holds for all x ∈ X. We consider the multiplicative algorithm

w
(r+1)
i = w

(r)
i
dπ (xi, ξ (r))− βr

m− βr
, i = 1, . . . , n, (11)

where the procedure is terminated if

max
i=1,...,n

dπ (xi, ξ (r)) ≤ 1.001m. (12)

Some numerical results for algorithm (11) are given in Table 3. We can see that the performance of algorithm (11) is similar
to the performance of algorithm (2).
Based on extensive numerical calculationswe conjecture that Theorem1 can be extended from theD-optimality criterion

to the Bayesian D-optimality criterion; that is, the sequence of designs defined by (11) with βr ≤ 1
2 mini=1,...,n dπ (xi, ξ

(r))

yields a nondecreasing sequence {Φπ (ξ (r))}.

5.2. A-, E- and c-optimal designs

Let us finally discuss an extension of the multiplicative algorithm to the A-, E- and c-optimal design problems. Consider
a general (differentiable) optimality criterion Φ such that Φ-optimal design either maximizes Φ(M(ξ)). It is often easier
to consider Ψ -optimal design which minimizes Ψ (M−1(ξ)) with respect to ξ . The nonnegative function d(ui, ξ) is then
generalized either to

φ(ui, ξ) =
∂Φ(M(ξ))
∂wi

= uTi
◦

Φ(ξ)ui

or

φ(ui, ξ) = −
∂Ψ (M−1(ξ))

∂wi
= uTiM

−1(ξ)
◦

Ψ (ξ)M−1(ξ)ui

where
◦

Φ(ξ) =
∂Φ(M)
∂M

∣∣∣∣
M=M(ξ)

,
◦

Ψ (ξ) =
∂Ψ (M−1)
∂M−1

∣∣∣∣
M=M(ξ)

.
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Table 4
The number of iterations required to achieve precision (14) by algorithm (13) for E-optimality with parameters βr = (1− γ )b(ξ (r)). The initial design ξ (0)
is a uniform distribution on the setX3 = {3i/19 | i = 0, . . . , 19}.

Algorithm (13) with βr = (1− γ )b(ξ (r))
γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(1, x, x2) 100 95 90 85 80 75 70 65
(1, x, x2, x3) 129 122 116 110 103 97 90 84 78
(1, x, . . . , x4) 51 48 46 43 41 38 35 33 31
(1, x, . . . , x5) 215 204 194 183 172 162 151 141 130 120
(1, e−x, xe−x) 265 252 239 226 213 200 187 174
(1, 1/(1+ x), 1/(1+ x)2) 115 109 103 98 92 86 80 75 69 62
(e−x, xe−x, e−2x, xe−2x) 493 469 444 419 395 370 346 321 297 272
(1, e−x, xe−x, e−2x, xe−2x) 90 86 81 77 72 68 63 59 54 50

For the A-optimality criterion Ψ (M−1(ξ)) = tr(M−1(ξ)), it follows
◦

Ψ (ξ) = Im and the function φ has the form

φA(ui, ξ) = uTiM
−2(ξ)ui.

If the multiplicity of the minimal eigenvalue of the matrixM(ξ) equals 1, then for the E-optimality criterionΦ(M(ξ)) =
λmin(M(ξ)) (which is in general not differentiable) the function φ has the form

φE(ui, ξ) = (pTui)2,

where p is a normalized eigenvector corresponding to the minimal eigenvalue of M(ξ). If the matrix M(ξ) has rank m, the
function φ for the c-optimality criterion Ψ (M−1(ξ)) = cTM−1(ξ)c is given by

φc(ui, ξ) = (cTM−1(ξ)ui)2.

For D-, A-, E- and c-optimality we consider an algorithm in the following form

w
(r+1)
i = w

(r)
i
φ(ui, ξ (r))+ βr
b(ξ (r))+ βr

, βr ∈ R (13)

where b(ξ) = trM(ξ)
◦

Φ(ξ) or b(ξ) = trM−1(ξ)
◦

Ψ (ξ). Note that sum of weights at the next iteration equals 1 as

b(ξ (r)) =
∑
j

w
(r)
j φ(uj, ξ

(r))

and that for the D-criterion (13) reduces to the recursive relation defined in (2).
Numerical calculations show that the algorithm (13) with βr = 0 is generally not monotonic (that is, the sequence

{Φ(M(ξ (r)))} is not a monotone sequence) for the A-, E- and c-criteria, in contrast to the case of D-optimality. We therefore
need to use positive values of βr in algorithm (13). We conjecture that for A-, E- and c-optimality, the sequence of designs
{ξ (r)} obtained by the recurrent formula (13) with βr ≥ 1

2b(ξ
(r)) yields a monotonic sequence {Φ(M(ξ (r)))}.

In numerical studies, we use βr = (1 − γ )b(ξ (r)) for different values of γ , 0 ≤ γ < 1. We run the iterations of the
algorithm (13) until the precision

max
i=1,...,n

φ(ui, ξ (r)) ≤ 1.001 b(ξ (r)) (14)

is achieved. Some results are given in Table 4 and demonstrate that multiplicative algorithms can also be applied to other
optimality criteria.
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