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Abstract. The Kantorovich inequality is zT Az zT A−1z ≤ (M +m)2/(4mM), where A is a
positive definite symmetric operator in Rd, z is a unit vector and m and M are respectively the
smallest and largest eigenvalues of A. This is generalised both for operators in Rd and in Hilbert
space by noting a connection with D-optimal design theory in mathematical statistics. Each
generalised bound is found as the maxima of the determinant of a suitable moment matrix.

1. Background

1.1. Kantorovich inequality. Let A be a positive definite symmetric operator in Rd with mini-
mum and maximum eigenvalues m and M (0 < m < M) respectively, and let z be a generic vector
in Rd . The Kantorovich inequality takes the form:

(1.1) zT AzzT A−1z ≤ (m + M)2

4mM
‖ z ‖4 .

Attributed to L.V. Kantorovich, [1], the inequality has built up a considerable literature. This
typically comprises generalisations. Examples are [2], [3], [4]. Operator versions are developed in
[5] and [6]. All the generalisations in this paper also have operators versions. Multivariate versions
have been useful in statistics to assess the robustness of least squares: see [7] and [8] and the
references therein.

We shall prefer to write (1.1) as

(1.2) max‖z‖=1{zT AzzT A−1z} =
(M + m)2

4mM
.

This is then reduced to a one-dimensional problem by a spectral resolution of A

A =
d∑

i=1

λiuiu
T
i ,

where the m = λ1 ≤ . . . ≤ λd = M are the ordered eigenvalues and ui (i = 1, . . . , d) are
corresponding orthogonal unit eigenvectors.

Define ξi = (uT
i z)2 ≥ 0 and note that ‖ z ‖= 1, ‖ ui ‖= 1 (1 = 1, . . . , d) and the ui being

orthogonal forces
∑

ξi = 1. Thus, ξ = {ξi, λi} can be considered as a discrete probability distri-
bution with masses ξi at the support points λi, respectively. Therefore, the equality (1.2) can be
written as

(1.3) max
ξ

{
d∑

i=1

λiξi

d∑

i=1

λ−1
i ξi

}
=

(M + m)2

4mM
.
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With det denoting determinant, this equality can be written as

(1.4) max
ξ

det(Γ(ξ)) =
(M −m)2

4mM
,

where

Γ(ξ) =
(

m11 m12

m21 m22

)

and
m11 =

∑
λ−1

i ξi, m12 = m21 =
∑

λ
−1/2
i λ

1/2
i ξi =

∑
ξi = 1, m22 =

∑
λiξi .

We see that Γ(ξ) is the moment matrix

Γ(ξ) =
∑

i

f(λi)f(λi)T ξi

in the special case f(x) = (x−1/2, x1/2)T .
This is the point at which the generalisations described here begin. We simply look at any

vector of functions f(x) = (f1(x), f2(x))T with f1(x), f2(x) > 0, x ∈ [m,M ] and seek an upper
bound:

(1.5) det(Γ(ξ)) =
∑

i

f1(λi)2ξi

∑

i

f2(λi)2ξi −
(∑

i

f1(λi)f2(λi)ξi

)2

≤ max
ξ

det(Γ(ξ)) .

The maximum is taken over all non-negative (probability) measures on [m,M ], that is

(1.6) ξ(dx) ≥ 0 on [m,M ],
∫ M

m

ξ(dx) = 1 ,

(although it is achieved for discrete measures). Note that the lower bound for det(Γ(ξ)) in (1.5)

min
ξ

{∑
f1(λi)2ξi

∑
f2(λi)2ξi −

(∑
f1(λi)f2(λi)ξi

)2
}
≥ 0

is just the Cauchy-Schwartz inequality, as pointed out by many authors.
In section 1.3 we shall cover the maximum determinant problem, which in mathematical sta-

tistics is called the D-optimality problem. In order to generalise the Kantorovich inequality while
retaining some of its simplicity we shall first study the special case when f(x) = (xp, xq)T .

1.2. The Hilbert space case. All bounds in this paper carry over to the Hilbert space case. We
consider a Hilbert space with inner product < ·, · > and A to be a positive bounded self adjoint
operator with spectrum ξ in [m, M ], where 0 < m < M < ∞. We replace the quadratic form
zT Az by the inner product:

< zA, z >=
∫ M

m

xξ(dx) = µ(1)

and similarly

< zAα, z >=
∫ M

m

xαξ(dx) = µ(α) .

Since in the D-optimality results we take the maximum over all probability measures ξ, we
interpret this as taking the supremum over all bounded self adjoint operators with spectral range
[m, M ].

This connection between D-optimality and moments problem more generally arose during work
by the authors on renormalised steepest descent problems [9].
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1.3. D-optimal design theory. Consider a set of continuous functions {f1, . . . , fk} on compact
set X in Rd. In linear regression theory the aim is to fit a model with expected response of the
form:

η = E(Y ) =
k∑

j=1

θjfj(x) .

A set of N points in X, namely an experimental design, is idealised to a probability measure ξ
on X. (We shall use the word “measure”, for short.) One can think of this as a normalisation
which avoids the use of the sample size, N . Following a statistical justification, which we ignore,
the D-optimality criterion is

max
ξ

det{Γ(ξ)} ,

where

Γ(ξ) =
∫

X

f(x)f(x)T ξ(dx)

is the k×k moment matrix for the f(x) = (f1(x), . . . , fk(x))T . We call a measure ξ∗ which achieves
this maximum D-optimal and the fact that it is achieved derives from the continuity of the fi’s
and the compactness of X. We shall also need the “variance function”

d(x, ξ) = f(x)T Γ(ξ)−1f(x)

which, statistically, is the normalised version of the variance of prediction of η at a point x (under
standard regression assumptions).

We state without proof the General Equivalence theorem (GET), see [10].

Theorem 1.1. The following three statements are equivalent for a measure ξ∗ on the compact set
X with continuous function f = (f1, . . . , fk)T .

(i): ξ∗ is D-optimal: achieves maxξ det{Γ(ξ)}
(ii): minξ maxx∈X d(x, ξ) = maxx∈X d(x, ξ∗)
(iii): maxx∈X d(x, ξ∗) = k.

Here are some useful lemmas, closely connected to the GET.

Lemma 1.2. For any measure ξ on X and functions f = (f1, . . . fk)T with non-singular moment
matrix Γ(ξ) we have ∫

X

d(x, ξ)ξ(dx) = k .

Lemma 1.3. If the D-optimal design is supported at discrete points xi (i = 1, . . . , n), then

d(xi, ξ
∗) = k (i = 1, . . . , n).

Lemma 1.4. If a D-optimal measure is supported at k point, where k is the number of functions
fj, then the masses at the support point are ξi = 1/k (i = 1, . . . , k).

Lemma 1.2 follows from ∫

X

d(x, ξ)ξ(dx) =
∫

X

f(x)Γ(ξ)−1f(x)T ξ(dx)

= trace{Γ(ξ)
∫

X

f(x)f(x)T ξ(dx)} = trace{Γ(ξ)−1Γ(ξ)} = k.

Lemma 1.3 follows from Lemma 1.2 and the GET by contradiction, as follows. Suppose there is
a xi such that d(xi, ξ

∗) < k. The GET (iii) says that d(x, ξ∗) ≤ k for all x ∈ X and so holds in
particular for the xi. The last two statements together contradict Lemma 1.2. Lemma 1.4 follows
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by noting that in that case Γ(ξ) is square so that
∏

ξi is a factor of det(Γ(ξ)), which is maximised,
subject to

∑
ξi = 1, by all ξi = 1/k.

One further,“dual” result, gives important geometric intuition [11].

Lemma 1.5. Define the set in Rk

F =
{
(f1(x), . . . , fk(x))T : x ∈ X

}
,

then ξ∗ is D-optimal if and only if the ellipsoid given by

zT Γ(ξ∗)−1z = k

is the minimum volume ellipsoid, centred at the origin, which contains F .

As pointed out, any D-optimal design problem with X = [m,M ] and k = 2 leads to a simple
generalisation of the Kantorovich inequality. But, of course, when k > 2 we have another kind of
generalisation based on

det{Γ(ξ)} ≤ det{Γ(ξ∗)} ,

where ξ∗ is D-optimum. We return to this discussion after our special example in the next section.

2. Examples

2.1. The case f(x) = (xp, xq)T . The purpose of this section is to give a simple generalisation of
the original Kantorovich inequality as stated in version (1.2).

Theorem 2.1. Let A be a positive definitive matrix with m,M as the minimum and maximum
eigenvalues. Then, if p and q have opposite signs (p q < 0),

(2.1) sup
‖z‖=1

{zT A2pz zT A2qz − (
zT Ap+qz

)2} =
1
4

(mpMq −mqMp)2 .

If p, q > 0

(2.2) sup
‖z‖=1

{
zT A2pz zT A2qz − (

zT Ap+qz
)2

}
=

1
4

(vpMq − vqMp)2 ,

where

v = max

{
m,

(
q

p

)1/(p−q)

M

}
.

Proof. We first reduce by the spectral decomposition as explained above for the Kantorovich case.
We next exhibit the D-optimal solution and check that Theorem 1 (iii) holds. There are two cases,
separated by the critical point x∗ = (q/p)1/(p−q)

M , in the theorem.
When p and q are of opposite signs or when p, q > 0 and m ≥ x∗ the D-optimal design ξ∗ is

supported with mass 1/2 on each of the points m,M . Then d(x, ξ∗) achieves a maximum value of
2 at {m,M}.

When p, q > 0 and m ≤ x∗, ξ∗ places mass 1/2 at each of x∗ and M . It is verified that d(x, ξ∗)
achieves a maximum of 2 at x∗ and M (see Figure 1 for typical functions d(x, ξ∗)).

The value x∗ was found by putting x∗ and M as support points with masses 1/2, 1/2 and forcing
∂d(x, ξ)/∂x to be zero at x∗, giving a single equation for x∗. That is sufficient is consequence of
the fact that maxx∈Xd(x, ξ∗) is achieved at every support point, by Lemma 1.3, and that, for this
example, any d(x, ξ) has at most two turning points in [m, M ].

From Theorem 1.1 (GET) we infer that in each case ξ∗ is D-optimum. The maximum values,
det{Γ(ξ∗)}, are given in the right-hand sides of (2.1) and (2.1). Since the ξ∗ are discrete measures
the maximum value is achieved by the two point measure ξ∗ in the first case, but in the second
the bound can be strict and only achieved when there is an eigenvalue of A equal to x∗. ¤
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Figure 1. The function d(x, ξ∗) for the case k = 2, m = 1,M = 5, f(x) =
(x, xq)T with q = −1 and q = 2

2.2. Other k = 2 examples. In the example just described the D-optimal measure in each of the
two cases has a two-point support. We are able to claim, by Lemma 1.3, that the masses are equal
on the design points. In general a D-optimal design can be found for a problem with k parameters
which has a maximum of s = k(k + 1)/2 support points. This follows using Caratheodory’s theorem
and the fact that the set of all Γ(ξ) is a convex set in s dimensions and a D-optimal solution can
be found on the boundary. Thus, when d = 2 we can expect in general up to 3 support points. If
for k = 2 the solution has three points ξ∗ is somewhat harder to find because there is no reason to
expect it to have uniform measure (Lemma 1.5 does not apply).
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A simple case in which there is always a 2-point support for the D-optimal design is when the
locus

F = {(f1(x), f2(x)) x ∈ [m,M ]}
is a convex and decreasing arc in R2, considering f2 as a function of f1 (or vice-versa). This is
most easily seen from the dual version in Lemma 1.4. It is clear, in this case, that the minimal
volume ellipse containing F must intersect F only at (f1(m), f2(m)) and (f1(M), f2(M)) and that
therefore the D-optimal measure is uniform {1/2, 1/2} on {m,M}. In this case, the bound, namely,
the maximum value of det(Γ(ξ)) is given by

1
4
(f1(m)f2(M)− f1(M)f2(m))2.

The Kantorovich inequality is the special case where the arc is given by f1f2 = 1, and the case
when p, q has different signs in Theorem 1.1 is also in the class.

In the proof of Theorem 2.1 we used the number of turning points of d(x, ξ∗) (2 in that case)
as part of the proof. We can give a number of elementary results using this idea. They are
specialisations to the case k = 2 of the following.

Lemma 2.2. Let f = (f1, . . . , fk)T be positive continuous functions on [m,M ] with the property
that for any measure ξ on [m, M ] for which the moment matrix Γ(ξ) is non-singular and d(ξ, x) is
differentiable the function ∂d(x, ξ)/∂x has r zeros in [m,M ]. Assume also that at least one such
non-singular Γ(ξ) exists. Then the D-optimum measure has at most (r+2)/2 points when r is even
and at most (r+3)/2 points when r is odd.

We can strengthen the condition concerning turning points in Lemma 2.2 to require that for any
positive definite matrix B, the derivative of fT Bf has r zeros. Or we can weaken the condition to
require that the derivative of d(x, ξ∗) itself has r zeros.

2.3. Two k = 3 examples. We give a couple of inequalities which follow from using k = 3. We
give them in the moment form using the notation µ(α) =

∫
X

xαξ(dx) which is
∑

xα
i ξi, in the

discrete case. Both examples are cases where k = 3 and the D-optimal measure is supported at 3
points and therefore, by Lemma 1.4, ξ1 = ξ2 = ξ3 = 1/3. The proof essentially uses Lemma 2.2
with k = 3, r = 3.

(i) Taking f = (1, x, x2)T the D-optimal design is uniform {1/3, 1/3, 1/3} on {m, (m + M)/2,M}
and we obtain the bound

det(Γ(ξ)) = µ(2)µ(4)− µ(3)2 − µ(1)2µ(4) + 2µ(1)µ(2)µ(3)− µ(2)3 ≤ (M −m)6

432
.

(ii) Taking f = (1, 1/x, x)T the D-optimal design is supported, again uniformly, at
{m, (mM)1/2,M} which gives

det(Γ(ξ)) = µ(−2)µ(2)− µ(−1)2µ(2)− µ(1)2µ(−2) + 2µ(−1)µ(1)− 1

≤ 1
27m2M2 (M −m)2(m1/2 −M1/2)4 .

For the original quadratic form versions of (i) and (ii) we put µ(α) = zT Aαz, ‖ z ‖= 1.
One may notice that the same bounds are obtained for a two dimensional model (k = 2). Indeed,

one can easily check that f = (x−1, x2)T and f = (x−1, 1/x)T respectively give the same bounds
that in (i) and (ii).
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3. Conclusion

The paper shows that the Kantorovich inequality for operators and in Rd can be reduced to a
moment bound in one dimension for spectral measures over the spectral range [m,M ]. D-optimal
design theory in statistics is a rich source of such bounds and indeed the Kantorovich bound can be
written as a simple D-optimal design problem. Essentially, any D-optimal design problem leads to
a special Kantorovich-type bound and some small examples are given. If the Kantorovich bound
is considered as as the converse bound to the Cauchy Schwarz bound so general “upper” moments
types bounds arising from D-optimality and elsewhere are converses to the “lower” moment bounds
which might arise, for example, by requiring A to be non-negative definite.

Extensions and alternatives to D-optimality are quite numerous: linear optimality, Ds-optimality,
c-optimality, weighted D-optimality, φp-optimality, and so on, each producing a moment bound of
some kind. Moreover, most of these reduce to special optimality problems in moment space with
the theory being most attractive because what is being maximised is a convex matrix functional.
So, in summary, the rather beautiful Kantorovich bound is perhaps the simplest case of a vast
range of bounds based on optimising a functional on the spaces of spectral moments.
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