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Abstract: A methodology of change-point detection in time series based on se-
quential application of the singular-spectrum analysis is proposed and studied. The
underlying idea is that if at a certain time τ the mechanism generating the time
series xt has changed, then an increase in the distance between the l-dimensional
hyperplane spanned by the eigenvectors of the so-called lag-covariance matrix, and
the M -lagged vectors (xτ+1, . . . , xτ+M ) is to be expected. Under certain condi-
tions, the proposed algorithm can be considered as a proper statistical procedure
with the moving sum of weighted squares of random variables being the detec-
tion statistic. The correlation structure of the moving sums is studied. Several
asymptotic expressions for the significance level of the algorithm are compared.
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1 INTRODUCTION

Singular-spectrum analysis (SSA) is a powerful technique of time series
analysis. The main idea of SSA is in applying the principal component
analysis to the ‘trajectory matrix’ obtained from the original time series
with subsequent reconstruction of the series. The methodology has been
known since the mid-eighties, see Broomhead and King (1986), Broomhead
et al. (1987) and Vautard et al. (1992). See also the recent monographs of
Elsner and Tsonis (1996) and Golyandina et al. (2001) and the references
therein. SSA is still a relatively unknown methodology in statistical circles.
On the other hand, it has already become a standard tool in the analysis of
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climatic and meteorological time series; see, for example, Fraedrich (1986),
Vautard and Ghil (1989).

In the present paper we continue the SSA-related research and develop
a methodology of change-point detection in time series based on the use of
SSA. The software can be downloaded from our web-site
http://www.cf.ac.uk/maths/stats/changepoint/

Let us briefly describe the main idea of the method. Let x1, x2, . . . be a
time series, M and N be two integers (M ≤ N/2), and set K = N −M +1.
Define the vectors Xj = (xj , . . . , xj+M−1)T (j = 1, 2, . . .) and the matrix

X = (xi+j−1)
M,K
i,j=1 = (X1, . . . , XK),

which is called the trajectory matrix.
We consider X as multivariate data with M characteristics and K ob-

servations. The columns Xj of X, considered as vectors, lie in the M -
dimensional space RM . The singular value decomposition (SVD) of the
so-called lag-covariance matrix R = XXT (and of the trajectory matrix X
itself) provides us with a collection of M eigenvalues and eigenvectors. A
particular combination of a certain number l < M of these eigenvectors
determines an l-dimensional hyperplane in RM . According to the SSA algo-
rithm, the M -dimensional data is projected onto this l-dimensional subspace
and the subsequent averaging over the diagonals gives us an approximation
to the original series; see the above cited literature for details.

One of the features of the SSA algorithm is that the distance between the
vectors Xj (j = 1, . . . ,K) and the l-dimensional hyperplane is controlled by
the choice of l and can be reduced to a rather small value. If the time series
{xt}N

t=1 is continued for t > N and there is no change in the mechanism
which generates the values xt, then this distance should stay reasonably
small for Xj , j ≥ K (for testing, we take Q such vectors). However, if at a
certain time N + τ the mechanism generating xt (t ≥ N + τ) has changed,
then an increase in the distance between the l-dimensional hyperplane and
the vectors Xj for j ≥ K + τ is to be expected.

SSA expansion tends to pick up the main structure of the time series, if
there is one. (This happens when the l-dimensional subspace approximates
well the M -dimensional vectors X1, . . . , XK .) If this structure is being found
and there are no structural changes, then the SSA continuation of the time
series should agree with the continued series. (That is, the Q vectors Xj

for j ≥ K should stay close to the l-dimensional subspace.) A change in
structure of the time series should force the corresponding vectors Xj out
of the subspace. This is the central idea of the method we propose.
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SSA performs the analysis of the time series structure in a nonsequential
(off-line) manner. However, change-point detection is typically a sequential
(on-line) problem, and we aim to develop an algorithm that can be used in
the on-line regime. This can be achieved by sequentially applying the SVD to
the lag-covariance matrices computed in a sequence of time intervals, either
[n+1, n+N ] or [1, n+N ]. Here n = 0, 1, . . . is the iteration number and N
is the length of the time interval where the trajectory matrix is computed.
The latter version produces a CUSUM-type algorithm. We, however, prefer
the former version, with the sequence of time intervals [n + 1, n + N ]: this
version is better accommodated to the presence of slow changes in the time
series structure, to outliers and to the case of multiple changes. (The price
for that is a smaller size of the sample used to construct the trajectory
matrices, and therefore some loss in efficiency in the ideal situation.)

SSA and the proposed change-point detection algorithm are model–free
tools and generally are not intended for precise statistical inferences; they are
essentially model-building procedures. However, under certain conditions,
the proposed algorithm can be considered as a proper statistical procedure,
see Section 3. Studying properties of this procedure is the main purpose of
the paper.

The paper is organized as follows.
Section 2 is devoted to description of the main algorithm. In Section 1.1

we provide an informal description while the the description in Section 1.2 is
formal. In Section 2.3 recommendations concerning the choice of parameters
are given. In Section 2.4 we discuss three numerical examples illustrating
some features of the method.

Section 3 is devoted to the formulation of the statistical model and sta-
ting the main statistical questions. In Section 2.1 we consider the rationale
of SSA. In Section 2.2 we formulate the null hypothesis model; this allows us
to express the main detection statistic as a moving weighted sum of squares
of random variables (Section 2.3) and to formulate the problem of selecting
the threshold in the main algorithm as the problem of boundary crossing
probability for this moving sum of squares (Section 2.4).

In Section 3 the correlation structure of the sequence of the moving
weighted sums of squares is studied. In particular, it is shown that this
structure very much depends on the ratio of M and Q.

In Section 4 three approximations for the significance level of the algo-
rithm are investigated. These approximations can be applied in three cases:
large M and large Q (Section 4.1), large M and small Q (Section 4.2), and
large M and Q = 1 (Section 4.3). The approximations of Section 4.3 are
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more precise than the approximations of Sections 4.1 and 4.2.

2 ALGORITHM

2.1 Informal description of the algorithm

Let x1, x2, . . . , xT be a time series with T ≤ ∞. Let us choose two integers:
the window width N (N ≤ T), and the lag parameter M (M ≤ N/2). Also,
set K = N −M + 1.

For each suitable n ≥ 0 we consider the time interval [n + 1, n + N ] and
construct the trajectory matrix (which will be called base matrix)

X(n) = (xn+i+j−1)
M,K
i,j=1 =




xn+1 xn+2 . . . xn+K

xn+2 xn+3 . . . xn+K+1
...

...
...

. . .
xn+M xn+M+1 . . . xn+N


 . (1)

The columns of X(n) are the vectors X
(n)
j (j = 1, . . . , K), where

X
(n)
j = (xn+j , . . . , xn+M+j−1)T , j ≥ −n+1 .

For each n = 0, 1, . . . we define the lag-covariance matrix Rn =X(n)
(
X(n)

)
T.

The SVD of Rn gives us a collection of M eigenvectors, and a particular
group I of l<M of them determines an l-dimensional subspace Ln,I of the
M -dimensional space RM of vectors X

(n)
j .

We denote the l eigenvectors that form the basis of the subspace Ln,I by
Ui1, ...,Uil and the sum of squares of the (Euclidean) distances between the
vectors X

(n)
j (j = p + 1, . . . , q) and this l-dimensional subspace by Dn,I,p,q

(the choice of p and q = p + Q is discussed in Section 2.3.2). The matrix
with columns X

(n)
j (j = p + 1, . . . , q) is called test matrix; the location of

the base and test matrices is depicted in Figure 1.
Since the eigenvectors of Rn are orthonormal, the squared Euclidean

distance between any vector Z ∈ RM and the subspace Ln,I spanned by the
l eigenvectors Ui1, . . . , Uil , is just

||Z||2 − ||UT Z||2 = ZT Z − ZT UUT Z ,

where || · || is the usual Euclidean norm and U is the (M× l)-matrix with
columns Ui1 , . . . , Uil . It is also the difference between the squared norms of
the vector Z and the projection of Z to the space Ln,I . The squared distance
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Figure 1: Construction of the base and test matrices.

Dn,I,p,q is the sum of these differences for the vectors X
(n)
j constituting the

test matrix. That is,

Dn,I,p,q =
q∑

j=p+1

(
(X(n)

j )T X
(n)
j − (X(n)

j )T UUT X
(n)
j

)
. (2)

If a change in the mechanism generating xt occurs at a certain point τ ,
then we expect that the vectors Xj = X

(n)
j−n with j > τ lie further away

from the l-dimensional subspace Ln,I than the vectors Xj with j ≤ τ . This
means that we expect that as n changes, the sequence Dn,I,p,q starts growing
somewhere around n̂ such that n̂+q+M−1=τ . (This value n̂ = τ−q−M+1 is
the first value of n such that the test sample xn+p+1, . . . , xn+q+M−1 contains
a point with a change.) This growth continues for some time; the expected
time of the growth depends on the duration of change and the relations
between p, q and N . In a particular case when p = N and Q = q − p ≤ M
and for an abrupt single change, the sequence Dn,I,p,q stops growing after
Q iterations, around the point n = τ − p −M . Then during the following
M −Q iterations one would expect reasonably high values of this sequence,
which must be followed by its decrease to, perhaps, a new level. (This relates
to the fact that the SSA decomposition should incorporate the new signal
at the intervals [n + 1, n + N ] with n ≥ τ −M .) See Section 2.4 for more
discussions.

The detection statistics are:

• Dn,I,p,q, the sum of squared Euclidean distances between the vectors
X

(n)
j (j =p+1, . . . , q) and the l−dimensional subspace Ln,I of RM ;

• the normalized sum of squared distances (the normalization is made
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with respect to the number of elements in the test matrix);

D̃n,I,p,q =
1

M(q − p)
Dn,I,p,q ;

• Sn = D̃n,I,p,q/υn.

Here υj is an estimate of the normalized sum of squared distances D̃j,I,p,q at
the time intervals [j + 1, j + N ] where the hypothesis of no change can be
accepted. We suggest to use υn = D̃n̄,I,0,K , where n̄ is the largest value of
j < n such that the null hypothesis of no change in the interval [j +1, j +N ]
has been accepted. Sn is the squared distance normalized to the number of
elements in the test and base matrices and to the variance of the residuals
(which are associated with noise); this statistic is shown in graphs.

The decision rule in the algorithm we propose is to announce a change
if for some n

Sn ≥ H, (3)

where H is a fixed threshold.

2.2 Formal description of the algorithm

Let x1, x2, . . . be a time series and N, M, l, p and q be fixed integers so that
0 ≤ l < M ≤ N/2 and 0 ≤ p < q. The proposed change-point detection
algorithm is as follows.
For each n = 0, 1, . . . we compute:
• the base matrix X(n), see (1),
• the lag-covariance matrix Rn = X(n)(X(n))T ,
• the SVD of Rn,
• Dn,I,p,q, see (2), the sum of the squared Euclidean distances between the
vectors X

(n)
j (j = p+1, . . . , q) and the l-dimensional subspace Ln,I , and

• Sn, the normalized squared distance.
Large values of Dn,I,p,q and Sn indicate that there is a change in the

structure of the time series. If for some n > N/2 the inequality (3) holds,
then a change in the structure of the time series is announced to have hap-
pened at about the point τ̂ = n̂+ q +M − 1. Here n̂ is the iteration number
such that the statistic Sn (or Dn,I,p,q) has started to grow the last time
before reaching the threshold.
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2.3 Choice of parameters

Significant changes in the time series structure will be detected for any
reasonable choice of parameters. To detect small changes in noisy series
some careful tuning of parameters may be required. Let us make some
recommendations concerning such a tuning.

2.3.1 Window width N

The choice of N depends on the kind of structural changes we are looking
for. A general rule is to choose N reasonably large. However, if we allow
small gradual changes in the time series then we could not take N very large.
Also, structural changes should not happen too often; ideally, at most one
change may occur in any subseries of length N . If N is too large, then we
can either miss or smooth out the effects of changes in our time series.

Alternatively, for small N precision of the SSA expansion can be poor;
this would cause a haphazard behaviour of the moving squared distances
Dn,I,p,q. As a consequence, we may have high frequency of false alarms;
also, an outlier can be recognized as a structural change.

2.3.2 Length and location of the test sample: p, q

A general recommendation is to choose p ≥ K; this makes the columns of
the base and test matrices different. If p ≥ N = M +K−1, then the base
and test matrices consist of different elements. This choice of p is reasonable
if the delay time between the change-point and the moment of its detection
permits such a choice.

Numerical simulations show that the choice Q = q−p = 1 is often very
reasonable and even optimal, see Moskvina and Zhigljavsky (2003). In this
case the squared distance Dn,I,p,q, which is a weighted sum of squares of
residuals, becomes an ordinary (unweighted) sum of squares of residuals.

To get a smoother behaviour of the test statistics Dn,I,p,q one may select
Q > 1. If Q becomes too large, then the behaviour of Dn,I,p,q becomes too
smooth (which makes it difficult to detect changes).

Below, we always assume that Q ≤ M . However, most results of Sections
3 and 4 can be easily reformulated for the case Q > M ; for doing this we
only need to make the substitution M ↔ Q in the related formulae.
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2.3.3 Parameters of SSA algorithm: lag M and group I

To choose values of the lag M and the group I of indices of the eigenvec-
tors, we have to follow standard SSA recommendations. For an extensive
discussion of this problem we refer to Golyandina et al. (2001), pp. 44–78.

If N is not very large, which should be regarded as the most interesting
case in practice, by default we choose M = bN/2c and I = {1, . . . , l}, where
l is such that the first l components describe well the signal and the lower
M − l components correspond to noise.

To choose l, visual inspection of the SSA decomposition of the whole
series and some large parts of the series before applying the change-point
detection algorithms is advised. If l is too small (underfitting), then we miss
a part of the signal and therefore we can miss a change (the change may
occur in the underestimated components). Alternatively, if l is too large
(overfitting), then we approximate a part of noise together with the signal
and therefore finding a change in the signal becomes more difficult.

There is also an automatic way of choosing l (such a recommendation is
popular in SSA literature): largest l eigenvalues are supposed to be separated
from the smallest M − l ones by the largest (in a suitable sense) gap in the
ordered set of eigenvalues of the lag-covariance matrix.

2.3.4 Normalization constant υn

The suggested normalization constant υn is a consistent estimate of σ2,
the variance of the noise under the null hypothesis model, see Section 3.2.
Theoretically, any other consistent estimate of σ2 may be used as well, see
Section 3.5.

2.4 Numerical examples

To illustrate applications of the algorithm, let us consider three numerical ex-
amples. In the first two the data was simulated so that N = 400, xt = zt+et

(t = 1, . . . , 400), where zt is the signal and the et are i.i.d.r.v., et ∼ N(0, 1)
for t = 1, . . . , 400 (white noise); the change-point was at τ = 200.

Example 1, see Figure 2.1(a,b):

zt =
{

1.5 sin(0.2t) for 1 ≤ t ≤ 200
1.5 sin(0.3t) for 201 ≤ t ≤ 400 .
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Example 2, see Figure 3.2(a,b):

zt =
{ −0.96zt−1 + zt−2 − 0.5zt−3 + 0.97zt−4 for 5 ≤ t ≤ 200
−0.96zt−1 + zt−2 − 0.7zt−3 + 0.97zt−4 for 201 ≤ t ≤ 400

with z1 = 0, z2 = 8, z3 = 6, z4 = 4.

In these two examples the change-point is not obviously seen in the
graphs. Example 2 is particularly difficult and the success of the proposed
change-point detection algorithm can only be explained by the fact that the
model (6) is very suitable for the corresponding time series. In Example 1
the model (6) is also suitable but the signals are simpler. In both examples
we have applied the following three versions of the algorithm:
(A1) N = 80, M = 40, p = 41, q = 81,
(A2) N = 80, M = 40, p = 80, q = 120, and
(A3) N = 80, M = 40, p = 80, q = 81.
The values of l are: l = 2 in Example 1 and l = 4 in Example 2. (In both
cases these values have been automatically chosen by the software.)

In Figures 2 (c), 3 (c) we plot the test statistics Sn′ = Sn+q+M−1 =
D̃n,I,p,q/D̃n̄,I,0,K , see Section 2.1. In plotting the detection statistics we use
the index n′ = n+q+M−1 to align the expected point of increase of the
statistics and the change-point, if there is one. For n′ < τ = 200 (while no
change occurred) the values of Sn′ should be close to 1. The corresponding
values of n′ are in the range [N + M, τ ] = [120, 200] for (A1) and (A3) and
[N +2M−1, τ ] = [159, 200] for (A2). Then the values of Sn′ are expected to
grow and reach their highest values for n′ around τ + M = 240. After this,
the values of Sn′ are stabilizing at perhaps another level for n′ > τ + q + M
(n′ > 320, n′ > 360 and n′ > 320 for (A1), (A2) and (A3), respectively).
This is what we roughly see in Figures 2(c) and 3(c).

Example 3, see Figure 4.
The series is a two-dimensional series with no signal and independent in
time errors {e(1)

t , e
(2)
t } such that

(
e
(1)
t

e
(2)
t

)
∼

{
N

(
0, σ2I2

)
for t = 1, . . . , 200

N
(
0, σ2Σ

)
for t = 201, . . . , 400,

(4)

where σ2 = 1,

I2 =
(

1 0
0 1

)
and Σ =

(
1 0.5

0.5 1

)
.
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Figure 2: Model of Example 1.
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The individual series e
(j)
t (j = 1, 2) do not have changes in their probabilistic

structure, see Figure 4 (a,b); the change occurs in the correlation structure
of the series. To detect this change we consider the sum e′t = e

(1)
t + e

(2)
t ,

see Figure 4 (c), and apply three change-point detection algorithms to this
series.

The CUSUM test with the detection statistic

g′k =
k∑

i=1

(
e
(1)
i + e

(2)
i

)

and normalized moving sum test with lag m = 100 and the statistic

g̃′k =
1
m

k+m∑

i=k+1

(
e
(1)
i + e

(2)
i

)

do not reflect the change, see Figure 4 (d,e). However, the moving sum of
squares

gk =
1

2mσ2

k+m∑

i=k+1

(
e
(1)
i + e

(2)
i

)2
(5)

(m = 100) does react to the change, see Figure 4 (f). Note that this al-
gorithm corresponds to the version of the algorithm of Section 2.2 with
M = 100, p = 100, q = 101.

The result of this example can be explained as follows. The change-
point model (4) is reduced to a change in variance for the series e

(1)
i + e

(2)
i

(i = 1, . . . , 400) which is a sequence of independent normal r.v. with zero
mean and variances 2σ2 for i ≤ 200 and 3σ2 for i > 200. It is, however, well-
known (see, for example, Basseville and Nikiforov, 1993), that the likelihood
ratio statistic for this problem is the sum of squares of e

(1)
i + e

(2)
i ; therefore,

the moving sum of squares (5) is a very natural (and close to the best
possible) change-point detection statistic in this case.

3 STATISTICAL CONSIDERATIONS

3.1 SSA rationale

The proposed algorithm can hardly be considered as an automatic tool for
detecting changes, it is rather a tool providing bricks for model building and
helping to see heterogeneities in the original series. However, under certain

12



-4

-2

0

2

4

-4

-2

0

2

4

-6

-3

0

3

6

0 50 100 150 200 250 300 350 400

(a) series 1

(b) series 2

(c) series 1 + series 2

(e)  Moving Sum

-0.3

0

0.3

0 100 200 300 400

(f)  Moving Sum of Squares

0.5

1

1.5

0 100 200 300 400

(d)  Modified CUSUM

0

10

20

0 100 200 300 400

Figure 4: Model of Example 3.

13



conditions, which asymptotically hold under fairy general assumptions con-
cerning the underlying time series, the algorithm may also be considered as
a proper statistical procedure; this can be used for justifying the choice of
the threshold H.

The underlying assumption of the SSA technique in general and the
proposed change-point detection algorithm in particular is the assumption
that the initial time series xt is well approximated by a series zt satisfying a
finite-difference equation of reasonably small order or, which is equivalent,
by a process of the form

zt =
∑

k

αk(t)eµkt sin(2πωkt + ϕk),

(where αk(t) are polynomials in t, µk, ωk and ϕk are arbitrary parameters)
with small number of terms. That is, we assume that

xt = zt + et , (6)

where et is a noise process and zt satisfies a finite-difference equation

zt = a1zt−1 + . . . + adzt−d (7)

with d < M , some coefficients a1, . . . , ad and some initial conditions. The
noise is any aperiodic series; it can be either random or deterministic, but
it must have the property that its approximation by solutions of finite-
difference equations is poor. (White noise certainly satisfies this assump-
tion.)

Application of SSA with lag M at time intervals [n + 1, n + N ] approxi-
mately recovers the model (6). As the SSA decomposition we obtain

xt = z
(n)
t + e

(n)
t , (8)

where z
(n)
t is the SSA approximation for zt, the solution of (7).

For a properly made SSA decomposition, the component z
(n)
t in (8) can

be identified as a trend of the original series plus a sum of a few oscillatory
components (reflecting, for example, seasonality); the residuals e

(n)
t can often

be associated with noise. An oscillatory series is a periodic or quasi-periodic
series which can be either pure or amplitude-modulated. The trend of a
series is, roughly speaking, a slowly varying additive component of the series
with all oscillations removed.

Note that no parametric model for the components in (8) is needed and
these components are produced by the series itself. Thus, when analyzing
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real-life series with the help of SSA, one can hardly hope to obtain z
(n)
t as

exact periodical series or linear trend, for example, even if this periodical
components or linear trend are indeed present in the series. This is an
influence of noise and a consequence of the non-parametric nature of the
method. Often, however, we can get a very good approximation to these
series, see Golyandina et all (2001).

In the ideal situation the components in (8) must be ‘independent’.
Achieving ‘independence’ (or ‘separability’) of the components z

(n)
t and e

(n)
t

in the SSA decomposition (8) is of prime importance in SSA. One of the
characteristics of separabilty is the so-called w-correlation between series,
which for series zt and et is defined as

Corrw(zt, et) =
∑

t wtztet(∑
t wtz2

t

∑
t wte2

t

)1/2

where the weight function wt = wM,p,q(t) is defined below in (10).
If zt satisfies a finite-difference equation (7) and the noise et is an ergodic

random process with finite variance, then asymptotically, as N and M →∞,
zt is weakly asymptotically separable from et on the intervals [n+1, n+
N ] implying, for example, that Corrw(z(n)

t , e
(n)
t ) → 0, see Corollary 6.1 in

Golyandina et al. (2001). There are also other conditions guaranteeing the
asymptotic separability of zt from et, see Chapter 6 in the above reference.

3.2 Null hypothesis

In studying statistical properties of the proposed change-point detection
algorithm we assume the following null hypothesis H0:

(i) the model (6) is valid and there is no change in parameters of the finite
difference equation (7),

(ii) z
(n)
t = zt for all n and t,

(iii) M and T tend to infinity in such a way that there exists the limit
limT/M < ∞,

(iv) et = e
(n)
t is a sequence of i.i.d.r.v. with finite forth moment.
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Figure 5: Function wM,p,q(t)

3.3 The detection statistic as a moving quadratic form

Under the null hypothesis, in the change-point detection algorithm we have
at iteration n

Dn,I,p,q =
∑

t

wM,n+p,n+q(t)e2
t , (9)

where, see Figure 5,

wM,p,q(t) =





t− p for p < t ≤ p+Q,
Q for p+Q < t ≤ p+M,
p+M+Q−t for p+M < t < p+M+Q,
0 otherwise.

(10)

The form of the weight function wM,p,q(t) is related to the structure of the
trajectory matrix (1), where xn+1 appears once, xn+2 – twice, and so on.

Obviously, (9) is a quadratic form eT Be, where e = (e1, e2, . . . , eN )T and
B is a diagonal matrix with diagonal elements Btt = wM,n+p,n+q(t). The
first two moments of this quadratic form can easily be calculated:

EDn,I,p,q = σ2MQ, var(Dn,I,p,q) =
1
3
Q(µ4 − σ4)(3MQ−Q2 + 1) , (11)

where σ2 = Ee2
i and µ4 = Ee4

i , the second and the forth moments of
the error distribution. In the case when the errors ei are normal N(0, σ2)
we have µ4 = 3σ4. In this case the distribution of the quadratic form
Dn,I,p,q = eT Be can be thought of as a modification of the χ2-distribution
for the weight function (10); this distribution is studied in Moskvina (2000);
it can also be considered as a particular case of the distribution (3.3.1.3) in
Richter (1992).
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Using the Central Limit Theorem we obtain asymptotically, as M →∞,

ξn =
Dn,I,p,q −EDn,I,p,q√

var(Dn,I,p,q)
∼ N(0, 1) . (12)

We could have ignored the dependence structure of the sequence of squared
distances Dn,I,p,q and use either the asymptotic normality (12) alone or the
limiting extreme value distribution to choose the threshold H. We, however,
adopt another approach, see Section 3.6, which is based on approximating
the sequence Dn,I,p,q by a continuous time random process. To do that, we
first need to study the correlations between Dn,I,p,q and Dn+ν,I,p,q for ν > 0.
This is done in Section 4.

3.4 Significance level

As a quality characteristic of change-point detection algorithms we consider
the maximum probability of false alarm on time intervals of given length
rather than the expected run length, which is more standard in sequential
change-point detection theory. As discussed in Lai (1995), the former cri-
terion is more natural for the detection statistics like a moving sum (our
detection statistic is the moving weighted sum of squares). According to
Bakache and Nikiforov (2000) the corresponding approach can be called
‘reliable detection’.

More specifically, assume that we have a change-point detection algo-
rithm, which announces a change if at some iteration n we have gn ≥ H,
where gn is a detection statistic and H is a threshold. The maximum prob-
ability of false alarm is then defined as

P (T ,H, gn)=sup
k≥0

Pr{gn ≥ H for at least one n= k+1, . . . , k+T |H0}, (13)

where H0 is the null-hypothesis of no change and T is the length of the
time interval where we monitor the false alarm. Supremum over k in (13)
disappears (that is, all the probabilities inside the supremum become equal)
if the statistics gn form a stationary sequence under the null hypothesis; this
is the case in our study. Therefore, without loss of generality, we can assume
that k = 0 and there is no supremum in (13).

The value of T can be an arbitrary integer between 0 and the maximum
possible value which in our notation is T−M−q+1 (see Figure 1). If T has
its maximum possible value (that is, T = T−M−q+1), then the probability
(13) is the significance level of the change-point detection algorithm. We
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shall assume (without loss of generality) that this is true and refer to (13)
as the significance level of the change-point algorithm.

We do not consider the power function of the algorithm in this study.
The problem of approximating the power function is more difficult; it also
depends on the kind of alternative hypotheses we consider. Note that a
classification of single changes in the model determined by (6) and (7) can
be found in Section 3.2 of Golyandina et al. (2001).

3.5 Standardization

Rather than using the direct expression (13) for the probability Pg(T ,H)
it is usually more convenient to standardize the detection statistic gn first;
that is, to pass from the sequence of gn to

ξn = (gn − Egn)/
√

var(gn) . (14)

If gn forms a stationary series, then µ = Egn and δ2 = var(gn) do not
depend on n and we then have

P (T ,H, gn) = P (T , h, ξn) = Pr{ max
1≤n≤T

ξn ≥ h |H0} (15)

with h = (H − µ)/δ (alternatively, H = µ + δh).
The two most important special cases of gn are as follows, see Section 2.1.

(i) For gn = Dn,I,p,q we have the expressions (11) for µ and δ2. Thus, for
gn = Dn,I,p,q the thresholds H and h in (15) are related through

H = σ2MQ + h

√
Q(µ4 − σ4)(3MQ + 1−Q2)

3
(16)

(ii) Let gn be Sn = D̃n,I,p,q/υn, where υn is a consistent (as M → ∞)
estimate of σ2 = Ee2

n. The expressions (11) imply

ED̃n,I,p,q = σ2 and var(D̃n,I,p,q) =
(µ4 − σ4)(3MQ + 1−Q2)

3σ4M2Q3
.

Assume that M → ∞ and en are Gaussian r.v. implying µ4 = 3σ4

(similar formulae hold for other error distributions). In view of the
asymptotic normality (12) and the celebrated Slutsky’s theorem (see,
for example, property (b), page 122 in Rao, 1973), which allows us to
substitute σ2 by υn preserving the asymptotic distribution, we obtain
that as M → ∞ the statistics gn = D̃n,I,p,q/υn are asymptotically
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normal. We also obtain 1 and 2(3MQ + 1−Q2)/3M2Q3 as the lim-
iting (as M → ∞) values in (15) for µ and δ2, respectively. Thus,
for gn = D̃n,I,p,q/υn in case of large M and normal en we can use the
relationship

H = 1 +
√

2

√
M −Q/3
MQ

h (17)

between H and h in (15). If the distribution of en is not normal then√
2 =

√
µ4/σ4 − 1 in the right-hand side of (17) must be replaced

by the corresponding value (for example, by 2/
√

5 in case of uniform
distribution).

Note that asymptotically (as M →∞) the cases (i) and (ii) above lead
to the same standardized sequence (14).

3.6 Continuous time approximations

The probabilities P (T , h, ξn) of (15) are T -dimensional integrals and are
difficult to compute. In Section 5 we shall use several continuous-time ap-
proximations to these probabilities. We shall assume that M → ∞ and
pass from the time series ξn (n = 1, . . . , T ) to a continuous-time process
ξt, t ∈ [0, T ], for some T depending on T , M and perhaps Q. Like the
series ξn, the process ξt will be standardized so that Eξt = 0 and Eξ2

t = 1
for all t. Also, the process ξt will be Gaussian and stationary with some
autocorrelation function R(s) = Eξtξt+s.

The probability P (T , h, ξn) will then be approximated by P (T, h, ξt),
the probability of reaching the threshold h by the process ξt on the interval
[0, T ]:

P (T , h, ξn) ' P (T, h, ξt) = Pr
{

max
0≤t≤T

ξt ≥ h

}

= Pr {ξt≥h for at least one t ∈ [0,T ]} . (18)

Two related characteristics can also be of interest: the probability den-
sity function of reaching the threshold h by the process ξt for the first time

q(t, h, ξt) =
d

dt
P (t, h, ξt), 0 < t < ∞ , (19)

and the average time %(h, ξt) until the process ξt reaches the threshold h:

E(%(h, ξt)) =
∫ ∞

0
tq(t, h, ξt)dt =

∫ ∞

0
tdP (t, h, ξt) .
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Note that it is often reasonable to assume that T is not very large,
relative to M . Some approximations of Section 4 for the significance level,
however, are reasonable only when T is much larger than M .

4 CORRELATIONS BETWEEN Dn,I,p,q AND
Dn+ν,I,p,q

For fixed p and q the squared distances Dn,I,p,q are functions of n. The
index n can be treated as time and thus the sequence D1,I,p,q, D2,I,p,q, . . .
defined in (9) can be considered as a time series. In order to understand
the behaviour of this time series (in particular, to obtain approximations
for the significance level of the change-point algorithm) we need to under-
stand the behaviour of the correlations Corr(Dn,I,p,q,Dn+ν,I,p,q) with ν ≥ 0.
Computation of these correlations is the purpose of the present section.

Without loss of generality we can assume that n = 0, p = 0 and Q =
q > 0. Thus, in the rest of this section we shall denote Dn+ν,I,p,q = Dν to
underline the dependence of Dn+ν,I,p,q on the shift ν.

Let us first consider the case ν = 1. Consider the quadratic forms D0

and D1. We can represent them as

D0 =
Q−1∑

i=1

ie2
i +Q

M∑

i=Q

e2
i +

Q+M−1∑

i=M+1

(Q+M−i)e2
i and D1 =D0−

Q∑

i=1

e2
i +

Q∑

i=1

e2
M+i.

Using these representations we can easily compute the expectation E(D0D1):

E(D0D1) = ED2
0 −Q(µ4 − σ4) .

This and the formulae (11) for ED0 and var(D0) give

Corr(D0,D1) =
E(D0D1)− (ED0)2

var(D0)
= 1− 3

3MQ−Q2 + 1
. (20)

Let us now consider the correlations between D0 and Dν for general
ν ≥ 0. Note that these correlations (unlike covariances) do not depend on
the distribution of errors en; this follows from the fact (see, for example,
Priestley, 1981) that the spectral density of the moving average process
depends only on the weights, which in our case are wM,n+p,n+q(t), see (9).

Thus, without loss of generality we assume that the errors et are normally
distributed. It allows us to apply the results of Theorem 3.2d.4 in Mathai
and Provost (1992). This theorem yields that if X∼Np(0,Σ) is p-variate
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normal distribution with zero mean and covariance matrix Σ > 0, and Q1 =
XT A1X, Q2 = XT A2X are two quadratic forms then

Cov(Q1, Q2) = 2tr(A1ΣA2Σ). (21)

Of course, this formula and the expression (11) for var(D0) yield the result
(20) for ν = 1.

For general ν ≥ 1 and 1 ≤ Q ≤ M there are five possible cases of
locations of the weight functions wt that define D0 and Dν . These cases are
illustrated in Figure 6.

Using the formula (21) we only need to carefully combine the corre-
sponding terms to derive the correlations Corr(D0,Dν) for these five cases,
see Moskvina (2001) for details. The result is as follows.

Define the function

f(a, b) = a(3ab− a2 + 1) .

and note that 3var(D0) = 2σ4f (Q,M), see (11). Then
Case 1. ν ≤ Q, Q+ν ≤ M :

Corr(D0,Dν) = 1− f (ν, M)
f (Q,M)

.

Case 2. ν ≤ Q, Q+ν ≥ M :

Corr(D0,Dν) =
f(Q,M+ν) + f(M−ν, Q)− 2f(ν, Q)

2f (Q,M)
.

Case 3. Q ≤ ν ≤ M, Q+ν ≤ M :

Corr(D0,Dν) = 1− f (Q, ν)
f (Q,M)

. (22)

Case 4. Q ≤ ν ≤ M, ν+Q ≥ M :

Corr(D0,Dν) =
f(M−ν, Q)− f(Q, ν−M)

2f (Q,M)
.

Case 5. M ≤ ν < Q+M−1:

Corr(D0,Dν) =
f(ν,M+Q)− f(M+Q, ν)

2f (Q,M)
.

Clearly, if ν≥Q+M−1 thenD0 andDν are independent implying Corr(D0,Dν)=0.
Figure 7 illustrates the behaviour of the autocorrelation function Corr(D0,Dν)

as a function of ν.
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Case 1.

ν ≤ Q,  Q+ν ≤ M.

Case 2.

ν ≤ Q,  Q+ν ≥ M.

Case 3.

Q ≤ ν ≤ Μ,  Q+ν ≤ M.

Case 4.

Q ≤ ν ≤ M,  

Q+ν ≥ M.

Case 5.

ν ≥ M.

Q Mν Q+ν

ν Q MQ+ν

νQ MQ+ν

νQ M Q+ν

M ν Q+M-1

Figure 6: Weight functions for Dn and Dn+ν with ν ≥ 1. Cases 1-5.
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Figure 7: Examples of the autocorrelation function Corr(D0,Dν).

5 APPROXIMATIONS FOR THE SIGNIFICANCE
LEVEL

For small ν, the behaviour of the autocorrelation function Corr(D0,Dν) as
M → ∞ depends on Q. In this section we consider three different approx-
imations to the significance level of the proposed algorithm. These three
approximations are valid depending on whether Q is large, small or just
equal to 1.

5.1 Smooth covariance functions: large M and Q

Consider the sequence of random variables ξ0, ξ1, . . . , ξT defined as

ξn =
Dn,I,p,q −EDn,I,p,q√

var(Dn,I,p,q)
(n = 0, . . . , T ) , (23)

see case (i) in Section 3.5.
In view of (20), the correlation between ξn and ξn+1 is

Corr(ξn, ξn+1) = 1− 3
3MQ−Q2 + 1

. (24)
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Assume that both M and Q are large; that is, M, Q → ∞ in such a way
that the limit λ = lim Q/M exists and 0 < λ ≤ 1. Set ∆ = 1/

√
MQ and

tn = n∆ (n = 0, 1, . . . , T ) so that tn ∈ [0, T ] with T = T ∆ . (25)

Define a piece-wise linear continuous-time process ξ
(M)
t , t ∈ [0, T ], as follows:

ξ
(M)
t =

1
∆

[(t− tn)ξn−1+(t− tn−1)ξn] for t ∈ [tn−1, tn], n = 1, . . . , T . (26)

The process ξ
(M)
t is such that ξ

(M)
tn = ξn for n = 0, . . . , T ; it is a second-

order stationary process in the sense that Eξ
(M)
t , var(ξ(M)

t ) and the auto-
correlation function R

(M)
ξ (t, t + k∆) = Corr(ξ(M)

t , ξ
(M)
t+k∆) do not depend on

t. The limiting process ξt is stationary Gaussian with some autocorrelation
function Rξ(t, t + s) = R(s) which is illustrated in Figure 7. In the case
λ = limQ/M > 0 we have for the autocorrelation function R(·):

R′(0−) = R′(0+) = lim
M,Q→∞

R(∆)− 1
∆

= lim
M,Q→∞

−3
√

MQ

3MQ−Q2 + 1
= 0;

here we have used the facts that R(0) = 1, ∆ = 1/
√

MQ and R(∆) = 1−
3/(3MQ−Q2+1). We therefore have R′(0)=0.

We similarly obtain

R′′(0)= lim
M,Q→∞

R(∆)+R(−∆)−2R(0)
∆2

= lim
M,Q→∞

−6MQ

3MQ−Q2+1
=− 6

3−λ
. (27)

For a Gaussian stationary process ξt with Eξt = 0 and Eξ2
t = 1 and

autocorrelation function R(·) such that R′(0) = 0 and R′′(0) < 0 we can use
the following two well-known approximations.

Approximation 1, see Theorem 8.2.7 in Leadbetter, Lindgren and Rootzen
(1983):

lim
T→∞

P





max
0≤t≤T

ξt ≤
x + log

√
−R′′(0)

2π√
2 log T

+
√

2 log T

︸ ︷︷ ︸
h





= exp(−e−x) .

Expressing x in terms of h, we obtain

lim
T→∞

P

{
max

0≤t≤T
ξt ≥ h

}
=1−exp(−e−x), (28)
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where x = x1 = γ(h− γ) + c with

γ = γ(T ) =
√

2 log T and c = − log

√
−R′′(0)
2π

= − log
1
2π

√
6

3− λ
. (29)

Approximation 2, see Cramer (1965):

lim
T→∞

P





max
0≤t≤T

ξt ≤
√

2 log µ(T ) +
x√

2 log µ(T )︸ ︷︷ ︸
h





= exp(−e−x),

where

µ(T ) =
T

√
−R′′(0)
2π

=
T

2π

√
6

3− λ
.

We thus obtain (28) with

x = x2 =
√

2 log µ(T )
(
h−

√
2 log µ(T )

)
.

We have

√
2 log µ(T )=

√
γ2−2c = γ − c

γ
+ O

(
1
γ3

)
, γ →∞

where γ and c are defined in (29). Therefore, for large T (and, therefore,
large γ) we have

x2 '
(

h− γ +
c

γ

) (
γ − c

γ

)
= (h− γ)γ + c︸ ︷︷ ︸

x1

−(h− γ)c
γ

− c2

γ2
.

We use this fact to construct another approximation.
Combined approximation: the formula (28) with

x =

{
x1 − (h−γ)c

γ − c2

γ2 for h ≤ γ − c
γ ,

x1 for h ≥ γ − c
γ .

Of course, asymptotically (as T → ∞) all three approximations give
similar results (note that the approximations are guaranteed to work only
for large T and h). In practice, however, approximations have to work for
values of T and h that are not too large.

A large number of simulations have been performed, see Moskvina (2001)
and Moskvina and Zhigljavsky (2003) for details, to assess the quality of
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Figure 8: Approximations for the significance level for the weighted sum of
normal r.v. and of their squares; smooth covariance functions: M = 100,
Q = 100, T = 2000.

these three approximations and influence of the values of T , M and Q and
the distribution of errors et on the behaviour of these approximations. Along
with the squared distances Dn,I,p,q =

∑
t wte

2
t , where et are i.i.d. normal

N(0, 1) random variables, we also considered the case when the squares of
normal random variables e2

t are substituted by the et giving the moving sum
D′n,I,p,q =

∑
t wtet. In this case the distribution of the sum is exactly normal

and we approximate the probability of reaching the threshold for the moving
weighted sum of normal r.v. Non-normal distributions for et have also been
studied.

Figure 8 shows the quality of the three approximations for Dn,I,p,q and
D′n,I,p,q with M = Q = 100 and T = 2000 (so that T=20). In each case
we performed 100 000 simulations of the standardized moving sums Dn,I,p,q

and D′n,I,p,q; the results, presented in Figure 8, are the values of proportions
of the cases when the threshold h has been reached.

The simulation results show that the combined approximation is typi-
cally the best of the three. For small M and Q and the distributions with
long tails the approximations are poor; for large M, Q and T and for finite-
support error distribution the approximations are good. For small T (say,
T ≤ 10) all the approximations are poor (this is related to the method of
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deriving these approximations which ignores the dependence between high
excursions of the process ξt).

5.2 Durbin’s tangent approximation: large M and small Q

Consider again the sequence of r.v. defined by (23). Unlike in Section 5.1,
consider now the asymptotics when M →∞ but Q is fixed. Set ∆ = 1/M ,
T = T ∆. Define tn (n = 0, 1, . . . , T ) as in (25) and consider the piece-wise
linear continuous-time process ξ

(M)
t defined by (26). The limiting process

(as M → ∞) is again some Gaussian second-order stationary process ξt

with a covariance function Rξ(t, t + s) = R(s). To apply the approximation
below, we shall need the value of

∂Rξ(t, s)
∂s

∣∣∣∣
s=t+

= R(0+).

Using (24) and the fact that ∆ = 1/M , we have

R′(0+) = lim
M→∞

R(∆)−R(0)
∆

= − lim
M→∞

3M

3MQ−Q2 + 1
= − 1

Q
.

Describe now the approximation we are going to use in the case R′(0+) 6= 0.
Let ξ(t) be a Gaussian random process on [0, T ] with Eξ(t)=0 and some

covariance function Rξ(t, s); let h(t) be some threshold. One of the most
known approximations for (19), the density function q(t, h, ξt) of the first
passage time, and therefore for (18), the first passage probability P (T, h, ξt),
is the tangent approximation suggested in Durbin (1985). For q(t, h, ξt) this
approximation can be written as

q(t, h, ξt) ' b0(t, h)f(t, h) , (30)

with

f(t, h)=
1√

2πRξ(t, t)
e
− h2(t)

2Rξ(t,t) , b0(t, h)=− h(t)
Rξ(t, t)

∂Rξ(s, t)
∂s

∣∣∣∣
s=t+

− dh(t)
dt

.

In view of (19) the related approximation for the first passage probability
P (T, h, ξt) is

P (T, h, ξt) '
∫ T

0
b0(t, h)f(t, h)dt .

In the case when the process is defined by the moving sum of squared dis-
tances and h(t) = h is constant, we have

b0(t, h) = −hR′(0+) =
h

Q
, q(t, h, ξt) ' h√

2πQ
e−h2/2
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and therefore

P (T, h, ξt) ' hT√
2πQ

e−h2/2. (31)

The quality of the approximation (31) is poor unless h is very large, see
Figure 9.
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Figure 9: Diffusion and Durbin’s approximations for the sum of normal r.v.
and their squares.
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5.3 Diffusion approximation: Q = 1 and large M

In the present section we shall assume that Q = 1 meaning that the squared
distances Dn,I,p,q are simple (unweighted) sums of squares of errors ej . For
approximating the boundary crossing probabilities P (T , h, ξn) we shall ap-
ply the approach used in Zhigljavsky and Kraskovsky (1988) for a different
change-point detection problem. The resulting approximation will be called
diffusion approximation.

Consider a sequence of random variables ξn defined in (12), see also
case (i) in Section 3.5. Since ξn are standardized, we have Eξn = 0 and
var(ξn) = 1. To compute correlations Corr(ξn, ξn+ν) for ν ≥ 0, we refer to
the case 3 in Section 4. The formula (22) with Q = 1 gives

Corr(ξn, ξn+ν) = 1− ν

M
, 1 ≤ ν ≤ M , (32)

see Figure 7, case Q = 1 (of course, (32) could have been easily derived
directly without referring to Section 4).

As in Section 5.2 we set ∆ = 1/M , T = T ∆, define tn (n = 0, 1, . . . , T )
as in (25) and consider the piece-wise linear continuous-time process ξ

(M)
t

defined by (26). As M → ∞, the sequence of processes ξ
(M)
t converges (in

the sense of convergence in metric of the space C[0, T ]) to a limiting process
ζt, t ∈ [0, T ]. The process ζt is a stationary Gaussian process with zero mean
and the triangular covariance function

R(u) = Eζtζt+u = max{0, 1−|u|} ; (33)

this is a consequence of (32) and the fact that Eζ2
t = Eξ2

n = 1 for all t and
n.

Therefore, the boundary crossing probabilities P (T , h, ξn) defined in (15)
can be approximated by the corresponding probabilities for the process ζt

with covariance function (33):

P (T , h, ξn) ' P (T, h, ζt) = Pr

{
sup

0≤t≤T
ζt ≥ h

}
. (34)

The problem of exact computation of the boundary crossing probabilities
P (T, h, ζt) has been studied in several papers including Mehr and McFadden
(1965), Shepp (1966), Shepp (1971), Shepp and Slepian (1976). The results
can be summarized as follows:
for T = 1

Ph = P (1, h, ζt) = 1− Φ2(h) +
1√
2π

he−h2/2Φ(h) +
1
2π

e−h2
; (35)
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more generally, for T ≤ 1

P (T, h, ζt) = 1− 1√
2π

∫ h

−∞
Φ

(
h(T + 1)− x(−T + 1)

2
√

T

)
e−x2/2dx+ (36)

+

√
2
π

hT e−h2/2

(T + 1)
Φ

(
h
√

T
)

+
√

Te−h2/2(T+1)

π(T + 1)
.

Here

Φ(h) =
1√
2π

∫ h

−∞
e−t2/2dt and ϕ(x) =

1√
2π

e−x2/2 .

For T > 1 the expressions for P (T, h, ζt) are complicated and difficult to
implement.

An approximation to P (T, h, ζt) for T > 1 has been developed in Zhigl-
javsky and Kraskovsky (1988). The main formula has the form

P (T, h, ζt) ' Ph + (1− Ph)(1− λT−1
h ) , (37)

where Ph = P (1, h, ζt) is defined in (35) and

λh =
Φ(h) +

√
16− 7Φ2(h)− 16Ph

4
.

The quality of this approximation seems to be rather high, even for not very
large values of h, see Figure 9. If h is large (h → ∞), we can derive from
(36) and (37) a simple approximation

P (T, h, ζt) ' hT√
2π

e−h2/2 , h →∞ , (38)

which is valid for all T > 0 (for details, see the derivation of formula (2.51),
p.80, in Zhigljavsky and Kraskovsky, 1988).

It is important to note that the large threshold approximation (38) is
exactly the Durbin’s tangent approximation (31) with Q = 1.

The quality of the diffusion and Durbin’s approximations is shown in
Figure 9 for Q = 1, M = 300, and T = 300 and 3000 so that T = 1 and
10. The plots in this figure demonstrate that the approximations (37) and
especially (35) are much more precise for typical h than the approximation
(31), which only works when h is very large.
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