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Observational data

cosmic microwave background  
observed by Planck satellite

galaxy maps  
by Sloan Digital Sky Survey

Weak lensing mass map by Hyper-Suprime Cam

temperature anisotropy

Oguri et al. 2017



Gaussian random field
• In a Gaussian random field G(x), the joint probability 

function of the field values αi=G(xi) with i=1,…,n 
becomes a multivariate Gaussian distribution

covariance matrix

• A Gaussian random field with vanishing mean value is 
completely determined by the two-point correlation 
functions 



Fourier space
• After Fourier-transform of the field G(x), each Fourier mode 

is given by the amplitude and the phase 

• In a Gaussian random field, each Fourier modes are 
statistically independent, and have random phases and the 
moduli |G(k)| follows Rayleigh distribution 

• Power spectrum P(k) completely describes the statistics of 
the random-Gaussian fields

Fourier amplitude

Fourier phase



Power spectrum  
of cosmic matter density field

P(k) is measured from 
different probes such as 
CMB, galaxy distributions, 
weak lensing

P(k)∝kns

horizon scale at matter-radiation equality time

P(k)=<|δk|2> 

Square of the amplitude of 
the matter density 
fluctuation as a function of 
wavenumber of k



Statistics for Non-Gaussian fields

• Power spectrum (or 2-point correlation functions) 
cannot describe non-Gaussian properties 

• Higher-order statistics beyond 2-point statistics are 
necessary 

• e.g., bispectrum (3-point), trispectrum (4-point) 

• Since non-Gaussianity has infinite freedom in general, 
there is no single statistic to fully characterize non-
Gaussian properties



Minkowski Functionals (MFs)
• MFs characterize morphological properties 
• In 2D space, there exist three MFs 

V0 Area   
V1 circumference  
V2 Euler characteristic Hermann Minkowski 

(1864-1909, Germay) 

e.g., UK 
V0:0.00048 (A/4πR2,A=244820km2) 
V1:2.0 (l/R,l=12800km) 
V2:33=34−1 （# of islands – # of lakes [>100km2])

Note: Values of MFs depend on a 
smoothing scale 



Conditions that MFs satisfy

K : convex bodies

1. Motion Invariance: Vk(K)=Vk(gK)  (g=rotation+transfer) 

2. Additivity: Vk(K1∪K2)=Vk(K1)＋Vk(K2)–Vk(K1∩K2) 

3. Continuity: Vk(K’)→Vk(K) as K’→K 

= + –



Hadwiger’s theorem (1957)
• In d-dimensional space, there exists 

d+1 number of MFs Vk  (k=0,1,…, d) 

• Any morphological descriptors 
satisfying motion-invariant, additive, 
and continuous conditions is a linear 
combination of MFs Hugo Hadwiger (1908-1981) 

Swiss mathematician 

χ: Euler characteristic



Steiner’s formula
• For a given body K, the MFs of the parallel 

body Kε at a distance ε from K are a polynomial 
ε with coefficients proportional to the MFs of K

e.g., 2D body

V0 Area,  V1 circumference, V2 Euler characteristic

K

Jakob Steiner (1796-1863) 
Swiss mathematician

Schroder-Turk et al. 2010 



MFs for a scalar field

(c) WMAP team (data), T. Matsubara (movie)

• Let’s consider a smooth scalar field f(θ) on the sphere (e.g., CMB) 
• MFs are measured in the excursion set over a given threshold ν 



A

V1: CircumferenceV0:area fraction V2: Euler Characteristic

MFs as a function of threshold ν



V1: CircumferenceV0:area fraction V2: Euler Characteristic

MFs as a function of threshold ν

B



V1: CircumferenceV0:area fraction V2: Euler Characteristic

MFs as a function of threshold ν

C



Analytical formula of MFs  
in Gaussian random field

• Tomita’s formula (Tomita 1986)

ωk: volume of the unit ball in k-dimension (ω0=1, ω1=2, ω2=π) 

where

V1: CircumferenceV0:area fraction V2: Euler Characteristic

Hermite polynomials



Matsubara’s formulae
• T. Matsubara 2003 derive the perturbative 

formula of MFs using multidimensional 
Edgeworth expansion

Gaussian term leading-order perturbative term
• Leaing-order NG term is determined by three “skewness 

parameters” 

• The skewness parameters are the sum of bispectra with different 
configuration weight

Takahiko Matsubara 
(professor@KEK)



2nd-order perturbation of MFs
• Matsubara 2010 derive the 2nd-order perturbations of 

MFs, which depend on 4 kurtosis parameters  

• Kurtosis parameters are the sum of trispectrum with 
different configuration weights



Primordial Non-Gaussianity
• Local-type non-Gaussianity in primordial perturbation 

(e.g., Komatsu, Spergel 2001) 

• Primoridal non-Gaussianity is a useful probe to 
differentiate models in early Universe 

• The simple model of inflation predicts fNL~O(1), while 
other models can generate larger non-Gaussianity 
fNL~O(1-100))

Φ: auxiliary Gaussian variable



Perturbative formula vs 
Simulations with primordial NG

       V0:surface area            V1: Circumference   V2: Euler Characteristic 
・ mock simulations  

ー Perturbative formulae 

The agreement 
between simulations 
and perturbative 
formulae is perfect
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fNL=100

CH, Matsubara, Coles et al. 2007 

Error: dispersion of MFs 
among 1000 mock 
simulations



gNL-type NG effect on MFs
2nd-order perturbation of MFs due to gNL-type NG is 
also very good agreement with the simulation results

CH, Matsubara 2011 



MFs
• MFs depend on all-orders of polyspectra (bispectra, 

trispectra, ….) 

• MFs and polyspectra play a complimentary role in the 
analysis of non-Gaussianity with each other 

• Computation of MFs are much faster than the full 
calculation of bispectra/trispectra  

• MFs are model-independent statistics and may be able 
to detect unexpected NG (e.g., unknown systematics), 
while the commonly used cubic statistics is optimal but 
model-dependent



Constraints on primordial NG 
from CMB data

• WMAP 
• optimal cubic estimators: fNL=32±21 (Komatsu et al. 2011) 
• MFs: fNL=20±42, gNL=(–1.9±6.4)x105 (C.H., Matsubara 2012) 

• Planck (Planck collaboration 2015) 
• optimal estimators:  fNL=0.8±5.0, gNL=(–9.0±7.7)x104 

• MFs: fNL=3±12, gNL=(–8±13)x104

all error values are 1σ

The results from MFs are consistent with those from 
optimal estimators



B-mode polarization from primordial 
gravitational wave (GW)

• Polarization pattern separate geometrically into E-mode 
(divergence-only) and B mode (curl-only) 

• Primordial gravitational wave generate B-mode, while 
density perturbations do not

(c) Wayne Hu 



Hunting primordial B-mode 
polarization signal

BICEP2 maps at 150GHz

On-going surveys: 
 POLARBEAR 
 BICEP/Keck Array, 
 SPTPol, ACTPol

r<0.07 (95%CL)

Future surveys: 
 LiteBIRD, PIXIE 
 CMB-S4

σ(r)~0.001

tensor-to-scalar ratio



Origin of primordial GW
• Many studies assume that the detection of primordial 

B-mode comes from the quantum fluctuations of 
vacuum during the cosmic inflation 

• GW could be sourced by particles produced during 
inflation 

e.g., gauge field sources chiral GWs via a pseudo 
scalar coupling (Namba et al. 2016) 

Is the assumption always true ?

Validity of the assumption should be tested



B-mode power spectrum

Vacuum and pseudoscalar model spectrum are compatible 
within 1-sigma 

vacuum spectrum fitted 
with r to the pseudo 
scalar spectrum

psueoscalar 
spectrum

pseudo-scalar model (Namba et al. 2016)

Shiraishi, CH, Namba, Hazumi, Namikawa 2016 



Non-Gaussianity in CMB B-mode 
polarization map

Shiraishi, CH, Namba, Hazumi, Namikawa 2016 

       V0:surface area            V1: Circumference        V2: Euler 

• The vacuum mode is nearly Gaussian, however the 
mode sourced by other fields could have large NG

The source-field NG in 
B-mode map is 
detectable at LiteBIRD 
experiment.

NG in B-mode map is 
useful to reveal the 
origin of the 
primordial B-mode  



Tensor Minkowski functionals

• Tensorial generalization of usual (scalar) MFs (Alesker 
1999, Beispert et al. 2002) 

• Tensor MFs of rank 2 are defined as

a+b=2
Schroder-Turk et al. 2010 



Anisotropy measures
• If the field is isotropic, the tensor MFs should be 

isotropic, i.e., the eigenvalues of the tensor are all equal 

• Deviations from isotropy can be measured from the ratio 
of the eigenvalues 

• tensor MFs quantifies the anisotropy of shape on 
different scales, which cannot be captured by the usual 
scalar MFs

ξi are the eigenvalues 
of a tensor MF 



Summary
• Minkowski Functionals (MFs) are morphological 

descriptors satisfying motion-invariant, additive and 
continuous conditions 

• Analytical formulae of MFs are derived in random 
Gaussian fields and also in weakly non-Gaussian fields 

• MFs have been applied to cosmological random fields 
such as CMB temperature/polarization maps as a 
probe of NG from morphological point of view 

• Tensor MFs become a novel probe of anisotropy and 
can be used to test the isotropy of our Universe


