Comparison of

 recurrent and vector forecastingAndrey Pepelyshev

The
University
Of

Sheffield.

Cardiff
September 20, 2010

Contents

- SSA framework
- SSA recurrent forecasting
- SSA vector forecasting
- Comparison of two procedures via simulation
- Comparison for China GDP time series

Embedding

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & \cdots & f_{n} \\
\hline
\end{array}
$$

f_{1}	f_{2}	f_{3}	\cdots	f_{n-L+1}
f_{2}	f_{3}	f_{4}	\cdots	f_{n-L+2}
f_{3}	f_{4}	f_{5}	\cdots	f_{n-L+3}
\vdots	\vdots	\vdots		\vdots
f_{L}	f_{L+1}	f_{L+2}	\cdots	f_{n}

\mathbf{X} is called a trajectory matrix, $2 \leq L<n-L+1$

Decomposition of series

$\mathbf{X}=\sqrt{\lambda_{1}} U_{1} V_{1}^{T}+\sqrt{\lambda_{2}} U_{2} V_{2}^{T}+\sqrt{\lambda_{3}} U_{3} V_{3}^{T}+\ldots$
$\begin{array}{lll}\Uparrow \\ F & \Downarrow \\ = & F_{1} & + \\ F_{2} & + & \Downarrow \\ F_{3}\end{array}+\ldots$

- F_{i} is a trend component
- F_{j} is a harmonic component
- F_{l} is a noise component

Extraction of signal

Let F be modeled as a sum of Signal and Noise

$$
\begin{array}{cccc}
\mathbf{X} & =\sum_{i \in I} \sqrt{\lambda_{i}} U_{i} V_{i}^{T}+\sum_{i \notin I} \sqrt{\lambda_{i}} U_{i} V_{i}^{T} \\
\Uparrow & & \Downarrow \\
F & \bigotimes & \hat{S} & + \\
F & \hat{E}
\end{array}
$$

- \hat{S} is an estimate of Signal
- Usually, $I=\{1,2, \ldots, r\}$

Forecast of signal

Let F be modeled as a sum of Signal and Noise.

$$
\begin{array}{ccc}
\mathbf{X} & =\sum_{i \in I} \sqrt{\lambda_{i}} U_{i} V_{i}^{T}+\sum_{i \not i I} \sqrt{\lambda_{i}} U_{i} V_{i}^{T} \\
\Uparrow & & \Downarrow \\
F & \boxed{R} & \forall \\
& \hat{S} & + \\
E
\end{array}
$$

To forecast of Signal, we can use the estimate \hat{S} and the signal subspace generated by $\left\{U_{i}\right\}_{i \in I}$.

Recurrent forecasting

Let Signal satisfy LRF $s_{j}=\alpha_{1} s_{j-1}+\ldots+\alpha_{q} s_{j-q}$.

- Construct LRF

$$
\begin{array}{r}
\tilde{s}_{j}=-\left(a_{1} \tilde{s}_{j-1}+\ldots+a_{L-1} \tilde{s}_{j-L+1}\right) / a_{L} \\
\left(a_{L}, \ldots, a_{1}\right)^{T}=\mathbf{U}_{r+1, L} \mathbf{U}_{r+1, L}^{T} e_{L}
\end{array}
$$

$\mathbf{U}_{r+1, L}=\left(U_{r+1} \vdots \ldots \vdots U_{L}\right), e_{L}=(0, \ldots, 0,1)^{T} \in \mathbb{R}^{L}$ U_{r+1}, \ldots, U_{L} are orthogonal to the signal subspace

- Apply this LRF to \hat{S} in recurrent way

Optimal LRF

-True LRF of Signal $s_{j}=\alpha_{1} s_{j-1}+\ldots+\alpha_{q} s_{j-q}$.

- Class of all possible LRF based on the signal subspace

$$
\begin{gathered}
\tilde{s}_{j}=-\left(a_{1} \tilde{s}_{j-1}+\ldots+a_{L-1} \tilde{s}_{j-L+1}\right) / a_{L} \\
\left(a_{L}, \ldots, a_{1}\right)^{T}=\mathbf{U}_{r+1, L} \mathbf{U}_{r+1, L}^{T} h \text { where } h \in \mathbb{R}^{L}
\end{gathered}
$$

- Optimal SSA LRF used in recurrent forecasting

$$
\begin{gathered}
\left(a_{L}, \ldots, a_{1}\right)^{T}=\mathbf{U}_{r+1, L} \mathbf{U}_{r+1, L}^{T} e_{L} \\
e_{L}=(0, \ldots, 0,1)^{T} \in \mathbb{R}^{L}
\end{gathered}
$$

Studying LRF

-True LRF of Signal $s_{j}=\alpha_{1} s_{j-1}+\ldots+\alpha_{q} s_{j-q}$ has the characteristic polynomial

$$
p(t)=t^{q}-\alpha_{q}-\alpha_{q-1} t-\ldots-\alpha_{1} t^{q-1} .
$$

-General LRF

$$
\tilde{s}_{j}=-\left(a_{1} \tilde{s}_{j-1}+\ldots+a_{L-1} \tilde{s}_{j-L+1}\right) / a_{L}
$$

has the characteristic polynomial

$$
\tilde{p}(t)=a_{L} t^{q}-a_{L-1}-a_{L-2} t-\ldots-a_{1} t^{L-1}
$$

with " q signal roots" + " $L-q$ extraneous roots"

Roots of characteristic polynomial

$$
s_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), q=4, N=100, L=20
$$

Left: roots for optimal SSA LRF
Right: roots for LRF with several random h

$$
\left(a_{L}, \ldots, a_{1}\right)^{T}=\mathbf{U}_{r+1, L} \mathbf{U}_{r+1, L}^{T} h
$$

Optimal property of SSA LRF

Theorem

All extraneous roots of SSA LRF lie inside the unit circle.

Overview of related results can be found in Usevich, K. (2010). On signal and extraneous roots in Singular Spectrum Analysis. Statistics and Its Interface 3, 281-295.

Vector forecasting

$$
\mathbf{X}_{(s)}=\sum_{i=1}^{r} \sqrt{\lambda_{i}} U_{i} V_{i}^{T}=\begin{array}{|c|c|c|c|c|}
x_{11} & x_{12} & x_{13} & \cdots & x_{1 K} \\
x_{21} & x_{22} & x_{23} & \cdots & x_{2 K} \\
x_{31} & x_{32} & x_{33} & \cdots & x_{3 K} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{L 1} & x_{L 2} & x_{L 3} & \cdots & x_{L K} \\
\hline
\end{array}
$$

- $K=N-L+1$
- $\operatorname{rankX}_{(s)}=r$
- Columns of $\mathbf{X}_{(s)}$ generate a signal subspace
- U_{1}, \ldots, U_{r} is a basis of this signal subspace

Vector forecasting

x_{11}	x_{12}	x_{13}	\cdots	$x_{1 K}$	z_{1}
x_{21}	x_{22}	x_{23}	\cdots	$x_{2 K}$	z_{2}
x_{31}	x_{32}	x_{33}	\cdots	$x_{3 K}$	z_{3}
\vdots	\vdots	\vdots		\vdots	
$x_{L 1}$	$x_{L 2}$	$x_{L 3}$	\cdots	$x_{L K}$	z_{L}

Add a new column such that it belongs to the signal subspace

- $\left(z_{1}, z_{2} \ldots, z_{L-1}\right)^{T}$ is the orthogonal projection of $\left(x_{2 K}, x_{3 K}, \ldots, x_{L K}\right)^{T}$
- $z_{L}=-\left(a_{1} z_{L-1}+\ldots+a_{L-1} z_{1}\right) / a_{L}$

Vector forecasting

| x_{11} | x_{12} | x_{13} | \cdots | $x_{1 K}$ | z_{1} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{21} | x_{22} | x_{23} | \cdots | $x_{2 K}$ | z_{2} | |
| x_{31} | x_{33} | x_{33} | \cdots | $x_{3 K}$ | z_{3} | |
| \vdots | \vdots | \vdots | | \vdots | | |
| $x_{L 1}$ | $x_{L 2}$ | $x_{L 3}$ | \cdots | $x_{L K}$ | z_{L} | |
| L | | | | | | |

- To make h-step ahead forecast, we need to add $h+L$ columns
- Perform hankelization and then remove last L elements to obtain forecast

Performance of forecast

Square Deviation for h-step ahead forecast

$$
\mathrm{SD}=\left(\frac{1}{h} \sum_{n=N+1}^{N+h}\left(\hat{s}_{n}-s_{n}\right)^{2}\right)^{1 / 2}
$$

- s_{n} is a true signal
- \hat{s}_{n} is a forecasted time series
- N is a length of time series
- 3000 repetitions were used to compute a distribution of SD

Performance of forecast

Square Deviation for h-step ahead forecast

$$
\mathrm{SD}=\left(\frac{1}{h} \sum_{n=N+1}^{N+h}\left(\hat{s}_{n}-s_{n}\right)^{2}\right)^{1 / 2}
$$

We are going to compare of distributions of SD for recurrent and vector forecasting by

- quantiles
- the average difference of $\mathrm{SD}_{r}-\mathrm{SD}_{v}$
- $R_{r>v}$, ratio of cases when $\mathrm{SD}_{r}>\mathrm{SD}_{v}$

Model: sin + white noise

$$
\begin{array}{ll}
f_{n}=\sin \left(\frac{2 \pi n}{T}\right)+\varepsilon_{n}, & n=1, \ldots, N \\
N=100, \sigma=0.25, & L=50, r=2
\end{array}
$$

SD for recurrent (red) and vector (blue) forecasting

Model: sin + red noise

$$
f_{n}=\sin \left(\frac{2 \pi n}{T}\right)+\varepsilon_{n}, n=1, \ldots, N
$$

$N=100, \sigma=0.25, \varepsilon_{n}=0.5 \varepsilon_{n-1}+\epsilon_{n}, L=50, r=2$

SD for recurrent (red) and vector (blue) forecasting

Conclusion for $\sin +$ white/red noise

- Recurrent and vector forecasting have roughly the same performance
- SD grows as 'redness' of noise increases, upto 2 times for moderate redness
- Redness yields larger error for low frequency harmonics than for high frequency harmonics

This conclusion remains true for a modulated sine

$$
f_{n}=e^{ \pm 0.01 n} \sin \left(\frac{2 \pi n}{T}\right)+\varepsilon_{n}, n=1, \ldots, N
$$

What procedure have to be chosen?

$\left(\mathrm{SD}_{r}, \mathrm{SD}_{v}\right)$ for different realizations

Both forecasting procedures yield either small error or large error

China GDP time series

Setup for forecasts comparison

Construct a series of figures with recurrent and vector forecasts starting b steps ago, $b=0,1, \ldots, 6$. Forecasts are solely based on decomposition of truncated series.

Each figure shows $(20+b)$-step ahead forecasts for $r=4$ and $L=12,13, \ldots, 19$.

$$
\mathrm{SD}=\left(\frac{1}{b} \sum_{n=N-b+1}^{N}\left(\hat{s}_{n}-f_{n}\right)^{2}\right)^{1 / 2}
$$

Original time series is given in green.

Forecasts starting 6 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 5 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 4 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 3 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 2 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 1 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 0 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Setup for forecasts comparison

Construct a series of figures with recurrent and vector forecasts starting b steps ago, $b=0,1, \ldots, 6$. Forecasts are solely based on decomposition of truncated series.

Each figure shows $(20+b)$-step ahead forecasts for $r=5$ and $L=12,13, \ldots, 19$.

$$
\mathrm{SD}=\left(\frac{1}{b} \sum_{n=N-b+1}^{N}\left(\hat{s}_{n}-f_{n}\right)^{2}\right)^{1 / 2}
$$

Original time series is given in green.

Forecasts starting 6 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 5 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 4 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 3 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 2 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 1 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 0 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Conclusion

Good choice is $r=4,5$ and $L=13$.

Forecasts starting 0 steps ago, $r=5$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Forecasts starting 0 steps ago, $r=4$

Recurrent (red) and vector (blue) forecasts, $L=12, \ldots, 19$

Thank you for your attention.

