Comparison of recurrent and vector forecasting

Andrey Pepelyshev

Cardiff September 20, 2010

Contents

- SSA framework
- SSA recurrent forecasting
- SSA vector forecasting
- Comparison of two procedures via simulation
- Comparison for China GDP time series

Embedding

$$\boxed{f_1 \mid f_2 \mid f_3 \mid f_4 \mid f_5 \mid f_6 \mid f_7 \mid \cdots \mid f_n} = F$$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline f_1 & f_2 & f_3 & \cdots & f_{n-L+1} \\ f_2 & f_3 & f_4 & \cdots & f_{n-L+2} \\ f_3 & f_4 & f_5 & \cdots & f_{n-L+3} \\ \vdots & \vdots & \vdots & & \vdots \\ f_L & f_{L+1} & f_{L+2} & \cdots & f_n \\ \hline \end{array} = \mathbf{X}$$

 ${f X}$ is called a trajectory matrix, $2 \leq L < n-L+1$

Decomposition of series

- \bullet F_i is a trend component
- \bullet F_j is a harmonic component
- ullet F_l is a noise component

Extraction of signal

Let F be modeled as a sum of Signal and Noise

$$\mathbf{X} = \sum_{i \in I} \sqrt{\lambda_i} U_i V_i^T + \sum_{i \notin I} \sqrt{\lambda_i} U_i V_i^T$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F = \hat{S} + \hat{E}$$

- ullet \hat{S} is an estimate of Signal
- Usually, $I = \{1, 2, \dots, r\}$

Forecast of signal

Let F be modeled as a sum of Signal and Noise.

$$\mathbf{X} = \sum_{i \in I} \sqrt{\lambda_i} U_i V_i^T + \sum_{i \notin I} \sqrt{\lambda_i} U_i V_i^T$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F = \hat{S} + \hat{E}$$

To forecast of Signal, we can use the estimate \hat{S} and the signal subspace generated by $\{U_i\}_{i\in I}$.

Recurrent forecasting

Let Signal satisfy LRF $s_j = \alpha_1 s_{j-1} + \ldots + \alpha_q s_{j-q}$.

Construct LRF

$$\tilde{s}_j = -(a_1 \tilde{s}_{j-1} + \dots + a_{L-1} \tilde{s}_{j-L+1})/a_L$$

$$(a_L, \dots, a_1)^T = \mathbf{U}_{r+1,L} \mathbf{U}_{r+1,L}^T e_L$$

$$\mathbf{U}_{r+1,L} = (U_{r+1} \dots U_L), \ e_L = (0, \dots, 0, 1)^T \in \mathbb{R}^L$$

 U_{r+1},\ldots,U_L are orthogonal to the signal subspace

ullet Apply this LRF to \hat{S} in recurrent way

Optimal LRF

- •True LRF of Signal $s_j = \alpha_1 s_{j-1} + \ldots + \alpha_q s_{j-q}$.
- Class of all possible LRF based on the signal subspace

$$\tilde{s}_j = -(a_1 \tilde{s}_{j-1} + \ldots + a_{L-1} \tilde{s}_{j-L+1})/a_L$$
$$(a_L, \ldots, a_1)^T = \mathbf{U}_{r+1,L} \mathbf{U}_{r+1,L}^T h \text{ where } h \in \mathbb{R}^L$$

Optimal SSA LRF used in recurrent forecasting

$$(a_L, \dots, a_1)^T = \mathbf{U}_{r+1,L} \mathbf{U}_{r+1,L}^T e_L$$
$$e_L = (0, \dots, 0, 1)^T \in \mathbb{R}^L$$

Studying LRF

•True LRF of Signal $s_j = \alpha_1 s_{j-1} + \ldots + \alpha_q s_{j-q}$ has the characteristic polynomial

$$p(t) = t^q - \alpha_q - \alpha_{q-1}t - \dots - \alpha_1 t^{q-1}.$$

•General LRF

$$\tilde{s}_j = -(a_1 \tilde{s}_{j-1} + \ldots + a_{L-1} \tilde{s}_{j-L+1})/a_L$$

has the characteristic polynomial

$$\tilde{p}(t) = a_L t^q - a_{L-1} - a_{L-2} t - \dots - a_1 t^{L-1}$$

with "q signal roots" + "L-q extraneous roots".

Roots of characteristic polynomial

$$s_j = \sin(2\pi j/6) + 0.5\sin(2\pi j/10)$$
, $q = 4$, $N = 100$, $L = 20$

Left: roots for optimal SSA LRF

Right: roots for LRF with several random \boldsymbol{h}

$$(a_L,\ldots,a_1)^T=\mathbf{U}_{r+1,L}\mathbf{U}_{r+1,L}^Th$$

Optimal property of SSA LRF

Theorem

All extraneous roots of SSA LRF lie inside the unit circle

Overview of related results can be found in Usevich, K. (2010). On signal and extraneous roots in Singular Spectrum Analysis. Statistics and Its Interface 3, 281–295.

Vector forecasting

$$\mathbf{X}_{(s)} = \sum_{i=1}^{r} \sqrt{\lambda_i} U_i V_i^T = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1K} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2K} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3K} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{L1} & x_{L2} & x_{L3} & \cdots & x_{LK} \end{bmatrix}$$

- K = N L + 1
- rank $\mathbf{X}_{(s)} = r$
- ullet Columns of ${f X}_{(s)}$ generate a signal subspace
- ullet U_1,\ldots,U_r is a basis of this signal subspace

Vector forecasting

x_{11}	x_{12}	x_{13}	• • •	x_{1K}	z_1
x_{21}	x_{22}	x_{23}	• • •	x_{2K}	z_2
x_{31}	x_{32}	x_{33}	• • •	x_{3K}	z_3
:	:				
x_{L1}	x_{L2}	x_{L3}	• • •	x_{LK}	z_L

Add a new column such that it belongs to the signal subspace

- $(z_1, z_2 \dots, z_{L-1})^T$ is the orthogonal projection of $(x_{2K}, x_{3K}, \dots, x_{LK})^T$
- $z_L = -(a_1 z_{L-1} + \ldots + a_{L-1} z_1)/a_L$

Vector forecasting

x_{11}	x_{12}	x_{13}	• • •	x_{1K}	z_1	
x_{21}	x_{22}	x_{23}	• • •	x_{2K}	z_2	
x_{31}	x_{33}	x_{33}		x_{3K}	z_3	
:	:	:		:		
x_{L1}	x_{L2}	x_{L3}		x_{LK}	z_L	
						7

- ullet To make h-step ahead forecast, we need to add h+L columns
- ullet Perform hankelization and then remove last L elements to obtain forecast

Performance of forecast

Square Deviation for h-step ahead forecast

$$SD = \left(\frac{1}{h} \sum_{n=N+1}^{N+h} (\hat{s}_n - s_n)^2\right)^{1/2}$$

- ullet s_n is a true signal
- \bullet \hat{s}_n is a forecasted time series
- ullet N is a length of time series
- 3000 repetitions were used to compute a distribution of SD

Performance of forecast

Square Deviation for h-step ahead forecast

$$SD = \left(\frac{1}{h} \sum_{n=N+1}^{N+h} (\hat{s}_n - s_n)^2\right)^{1/2}$$

We are going to compare of distributions of SD for recurrent and vector forecasting by

- quantiles
- ullet the average difference of $\mathrm{SD}_r \mathrm{SD}_v$
- ullet $R_{r>v}$, ratio of cases when $\mathsf{SD}_r > \mathsf{SD}_v$

Model: $\sin + \text{ white noise}$

$$f_n = \sin\left(\frac{2\pi n}{T}\right) + \varepsilon_n, \ n = 1, \dots, N$$

$$N = 100, \ \sigma = 0.25, \quad L = 50, \ r = 2$$

$$0.01 \quad \text{SD}_r \text{SD}_v$$

$$0.15 \quad \text{O}_{0.01} \quad \text{O}_{0.$$

SD for recurrent (red) and vector (blue) forecasting

Model: $\sin + \text{red noise}$

$$f_n = \sin\left(\frac{2\pi n}{T}\right) + \varepsilon_n, \ n = 1, \dots, N$$

$$N\!=\!100$$
, $\sigma=0.25$, $\varepsilon_n\!=\!0.5\varepsilon_{n-1}\!+\!\epsilon_n$, $L=50$, $r=2$

SD for recurrent (red) and vector (blue) forecasting

Conclusion for $\sin + \text{white/red noise}$

- Recurrent and vector forecasting have roughly the same performance
- SD grows as 'redness' of noise increases, upto 2 times for moderate redness
- Redness yields larger error for low frequency harmonics than for high frequency harmonics

This conclusion remains true for a modulated sine

$$f_n = e^{\pm 0.01n} \sin\left(\frac{2\pi n}{T}\right) + \varepsilon_n, \ n = 1, \dots, N$$

What procedure have to be chosen?

 (SD_r,SD_v) for different realizations

Both forecasting procedures yield either small error or large error

China GDP time series

Setup for forecasts comparison

Construct a series of figures with recurrent and vector forecasts starting b steps ago, $b=0,1,\ldots,6$. Forecasts are solely based on decomposition of truncated series.

Each figure shows (20+b)-step ahead forecasts for r=4 and $L=12,13,\ldots,19$.

$$SD = \left(\frac{1}{b} \sum_{n=N-b+1}^{N} (\hat{s}_n - f_n)^2\right)^{1/2}$$

Original time series is given in green.

Forecasts starting 6 steps ago, r=4

Forecasts starting 5 steps ago, r=4

Forecasts starting 4 steps ago, r=4

Forecasts starting 3 steps ago, r=4

Forecasts starting 2 steps ago, r=4

Forecasts starting 1 steps ago, r=4

Forecasts starting 0 steps ago, r=4

Setup for forecasts comparison

Construct a series of figures with recurrent and vector forecasts starting b steps ago, $b=0,1,\ldots,6$. Forecasts are solely based on decomposition of truncated series.

Each figure shows (20+b)-step ahead forecasts for r=5 and $L=12,13,\ldots,19$.

$$SD = \left(\frac{1}{b} \sum_{n=N-b+1}^{N} (\hat{s}_n - f_n)^2\right)^{1/2}$$

Original time series is given in green.

Forecasts starting 6 steps ago, r=5

Forecasts starting 5 steps ago, r=5

Forecasts starting 4 steps ago, r=5

Forecasts starting 3 steps ago, r=5

Forecasts starting 2 steps ago, r=5

Forecasts starting 1 steps ago, r=5

Forecasts starting 0 steps ago, r=5

Conclusion

Good choice is r = 4, 5 and L = 13.

Forecasts starting 0 steps ago, r=5

Forecasts starting 0 steps ago, r=4

Thank you for your attention.

