SSA change-point detection for environmental data and monitoring the quality of photovoltaic modules

Andrey Pepelyshev

Rimini
May 22, 2013
Contents

- Algorithm of SSA change-point detection
- Possibilities with examples
- ARL in the presence of serial correlation
- Analysis of environmental data
- Application in photovoltaics
Singular Spectrum Analysis is a nonparametric method that decomposes a time series onto the sum of trend, periodics and noise.

SSA can be used to detect changes

- mean
- variance of noise
- amplitude of periodics
- frequency of periodics
- coefficients of a linear recurrent formulae

SSA change-point detection is proposed in Moskvina, Zhigljavsky (2003, 2007).
We say that there is a change-point in a series

\[\ldots, x_{n+1}, \ldots, x_{n+N}, \ldots, x_{n+p+1}, \ldots, x_{n+q+L-1}, \ldots \]

if the 'test' series \(x_{n+p}, \ldots, x_{n+q+L-1} \) does not share the structure of the 'base' series \(x_{n+1}, \ldots, x_{n+N} \).
SSA change-point algorithm

The main parameter is N, others are L, k, p, q.

Assumptions

- The distance between change-points is at least N.
- The first change-point occurs after N points.
- The parameter N is big enough to estimate a 'structure' of series.
Transformation of a series

Compound vectors X_1, X_2, \ldots from a series x_1, x_2, \ldots by applying the moving window of length L,

\[
X_1 = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_L \end{pmatrix}, \quad X_2 = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_{L+1} \end{pmatrix}, \quad X_3 = \begin{pmatrix} x_3 \\ x_4 \\ \vdots \\ x_{L+2} \end{pmatrix}, \ldots
\]

We say that a series has a structure of order k if $\dim \mathcal{L}(X_1, X_2, \ldots, X_n) = k$ for all $L, n > k$.
Examples of structured series

The series \(x_j = A \sin(\gamma j + \omega) \) has a structure of order 2 since

\[
X_{j+1} = \cos(\gamma j) \begin{pmatrix}
\sin(\gamma + \omega) \\
\sin(2\gamma + \omega) \\
\vdots \\
\sin(L\gamma + \omega)
\end{pmatrix} + \sin(\gamma j) \begin{pmatrix}
\cos(\gamma + \omega) \\
\cos(2\gamma + \omega) \\
\vdots \\
\cos(L\gamma + \omega)
\end{pmatrix}.
\]

The series \(x_j = \sum_{i=1}^{m} A_i e^{-\beta ij} \sin(\gamma_{ij} + \omega_i) \) has a structure of order \(2m \).
SSA estimation of a structure

1) For a noisy series \((x_{n+1}, \ldots, x_{n+N}) \), we build vectors \(X_{n+1}, \ldots, X_{n+N-L+1} \).

2) Make the SVD decomposition \(X = \sum_{i=1}^{L} \sqrt{\lambda_i} U_i V_i^T \), \(\lambda_1 \geq \lambda_2 \geq \ldots \).

3) Select \(k \) principal components with largest \(\lambda_i \). Components with small \(\lambda_i \) correspond to a noise.

4) Define the subspace as \(\mathcal{L}(U_1, U_2, \ldots, U_k) \), which describes a structure of series.
Formal description of a change-point

Consider the statistic $D_{n,k,p,q}$ defined as a distance between vectors $X_{n+p+1}, \ldots, X_{n+q}$ and the subspace $\mathcal{L}(U_1, U_2, \ldots, U_k)$,

$$D_{n,k,p,q} = \frac{1}{L(q-p)} \sum_{i=n+p+1}^{n+q} [X_i^T X_i - X_i^T U U^T X_i]$$

where $U = (U_1, \ldots, U_k)$ is a 'structure' of the series x_{n+1}, \ldots, x_{n+N}.

Rule.
There is a change-point in a series if $D_{n,k,p,q} > h$.

SSA change-point algorithm

A. Pepelyshev SSA change-point detection
Asymptotic behaviour

Theorem. [Moskvina, Zhigljavsky (2003)]
Under certain assumptions, we have

\[
\frac{D_{n,k,p,q} - a}{s} \approx N(0, 1)
\]

where

\[a = E D_{n,k,p,q} \approx \sigma^2 LQ, \quad Q = q - p, \]

and

\[s^2 = \text{Var} D_{n,k,p,q} \approx \sigma^2 \frac{4}{3} Q(3LQ - Q^2 + 1). \]
Final step of algorithm

Define the normalized statistic

\[d_n = D_{n,k,p,q}/D_{n,k,0,N-L}. \]

Consider the process \(W_1 = 0, W_2, W_3, \ldots \) defined as

\[W_{n+1} = \max \left\{ W_n + d_{n+1} - d_n - 1/(3LQ), 0 \right\}. \]

Rule.

The point \(\tau = n + q + L - 1 \) is a change-point if \(W_n > h \),

\[h = \frac{2t_\alpha}{LQ} \sqrt{Q(3LQ - Q^2 + 1)/3} \]

and \(t_\alpha \) is the \((1 - \alpha)\)-quantile of the standard normal distribution.
CUSUM and RS procedure

Define the score statistic $S_n = d_{n+1} - d_n - 1/(3LQ)$, where $d_n = D_{n,k,p,q}/D_{n,k,0,N-L}$. The process $W_1 = 0, W_2, W_3, ...$ has the form of CUSUM,

$$W_{n+1} = \max \left\{ W_n + S_n, 0 \right\}.$$

The Shiryaev-Roberts procedure is

$$R_n = (1 + R_{n-1})e^{S_n}, \quad R_0 = 1.$$

Under traditional settings, the SR procedure is optimal in terms of the average detection delay.
Choice of parameters

1) N should be large enough to sufficiently well estimate a 'structure' of series.
2) Set $L = N/2$, $p = N$, $q = N + 1$.
3) Estimate k from all available data.

Thus, we have the situation where

\[
\cdots, x_{n+1}, \cdots, x_{n+N}, x_{n+N+1}, \cdots, x_{n+N+L}, \cdots
\]

- base series
- test series

or, alternatively,

\[
X_{n+1}, \cdots, X_{n+N-L+1}, \quad X_{n+N+1}
\]

- base vectors
- test vector
Change in mean

\[x_n = 2 + 2 \sin(0.4n) + \epsilon_n \quad \text{for} \quad n \leq 200 \quad \text{and} \]
\[x_n = 4 + 2 \sin(0.4n) + \epsilon_n \quad \text{for} \quad n > 200, \quad \epsilon_n \sim N(0,1) \]

\[N = 80, \quad k = 3 \]
Change in variance

\[x_n = 2 + 2 \sin(0.4n) + \varepsilon_n \text{ for } n \leq 200 \text{ and } \]
\[x_n = 2 + 2 \sin(0.4n) + 2\varepsilon_n \text{ for } n > 200, \varepsilon_n \sim N(0, 1) \]

\[N = 80, \quad k = 3 \]
Possibilities with examples

Change in frequency

\[x_n = 2 + 2 \sin(0.4(n - 200)) + \varepsilon_n \text{ for } n \leq 200 \text{ and } \]
\[x_n = 2 + 2 \sin(0.2n) + \varepsilon_n \text{ for } n > 200, \varepsilon_n \sim N(0, 1) \]

\[N = 80, \ k = 3 \]
Change in phase

\[x_n = 2 + 2 \sin(0.4n) + \varepsilon_n \text{ for } n \leq 200 \text{ and } \]
\[x_n = 2 + 2 \sin(0.4n + 1) + \varepsilon_n \text{ for } n > 200, \varepsilon_n \sim N(0, 1) \]

\[N = 80, \ k = 3 \]
Change in AR model with iid noise

\[z_n = -0.96 z_{n-4} + z_{n-3} - 0.5 z_{n-2} + 0.97 z_{n-1}, \quad n = 5, \ldots, 200, \]
\[z_n = -0.96 z_{n-4} + z_{n-3} - 0.7 z_{n-2} + 0.97 z_{n-1}, \quad n = 201, \ldots, 400, \]
\[x_n = z_n + \varepsilon_n, \quad z_1 = 0, \quad z_2 = 8, \quad z_3 = 6, \quad z_4 = 4 \]

\[N = 80 \]
\[k = 4 \]
Detection of outliers

\[x_n = 2 + 2 \sin(0.2n) + \varepsilon_n \text{ for } n \neq 215, \quad x_{215} = 8, \]
\[\varepsilon_n \sim N(0, 1) \]

\[N = 80, \quad k = 3 \]
SSA change-point detection with $k = 1$, $N = 80$

$x_n = \mu + \phi(x_{n-1} - \mu) + \varepsilon_n$, $\varepsilon_n \sim N(0, 1)$, $\mu = 0.5$

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>308</td>
</tr>
<tr>
<td>-0.4</td>
<td>391</td>
</tr>
<tr>
<td>-0.2</td>
<td>498</td>
</tr>
<tr>
<td>0</td>
<td>524</td>
</tr>
<tr>
<td>0.2</td>
<td>460</td>
</tr>
<tr>
<td>0.4</td>
<td>224</td>
</tr>
<tr>
<td>0.5</td>
<td>192</td>
</tr>
</tbody>
</table>

$x_n = \mu + \varepsilon_n - \theta \varepsilon_{n-1}$, $\varepsilon_n \sim N(0, 1)$, $\mu = 0.5$

<table>
<thead>
<tr>
<th>θ</th>
<th>ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>272</td>
</tr>
<tr>
<td>-0.4</td>
<td>302</td>
</tr>
<tr>
<td>-0.2</td>
<td>441</td>
</tr>
<tr>
<td>0</td>
<td>524</td>
</tr>
<tr>
<td>0.2</td>
<td>512</td>
</tr>
<tr>
<td>0.4</td>
<td>503</td>
</tr>
<tr>
<td>0.5</td>
<td>430</td>
</tr>
</tbody>
</table>

The Effect of Serial Correlation on the Performance of CUSUM Tests
SSA change-point detection with $k = 3$, $N = 80$

$x_n = \mu + \phi(x_{n-1} - \mu) + \varepsilon_n$, $\varepsilon_n \sim N(0, 1)$,
$\mu = 2 + 2 \sin(0.4n)$

<table>
<thead>
<tr>
<th>ϕ</th>
<th>-0.5</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL</td>
<td>209</td>
<td>333</td>
<td>412</td>
<td>450</td>
<td>355</td>
<td>162</td>
<td>115</td>
</tr>
</tbody>
</table>

$x_n = \mu + \varepsilon_n - \theta \varepsilon_{n-1}$, $\varepsilon_n \sim N(0, 1)$,
$\mu = 2 + 2 \sin(0.4n)$

<table>
<thead>
<tr>
<th>θ</th>
<th>-0.5</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL</td>
<td>190</td>
<td>243</td>
<td>337</td>
<td>450</td>
<td>423</td>
<td>415</td>
<td>356</td>
</tr>
</tbody>
</table>
Example: gasoline demand

Abraham, Redolter (1983) Statistical Methods for Forecasting, Wiley
http://robjhyndman.com/TSDL/sales/

Monthly gasoline demand in Ontario from 1960 to 1975

\[N = 24 \]
\[k = 5 \]
Example: global Earth temperature

National Space Science and Technology Center, USA, NASA
http://vortex.nsstc.uah.edu/data/msu/t2lt/uahncdc.lt

Monthly Earth temperatures from Dec 1978 to Jun 2012

\[N = 72 \]
\[k = 9 \]
Example: yearly sunspot number

Yearly sunspot number from 1700 to 2011

\[N = 40 \]
\[k = 4 \]
Power measurements of PV modules

Power of PV modules obtained by using a flasher (sun simulator) from a production line 1

\[N = 200 \]
\[k = 1 \]
Power measurements of PV modules

Power of PV modules obtained by using a flasher (sun simulator) from a production line 2

\[N = 200 \]
\[k = 1 \]
Thank you for your attention!