On the choice of a linear reccurent formula for the SSA forecast

Andrey Pepelyshev

St.Petersburg State University Mathematical Department

August 28, 2008, Cardiff, Wales, UK

Introduction: SSA algorithm

- Time series $\left(f_{0}, \ldots, f_{N-1}\right), f_{j}=h_{j}+\varepsilon_{j}$, where $\left(h_{0}, \ldots, h_{N-1}\right)$ is a signal of rank r and ε_{j} is a noise
- Parameter: window length $L, K=N+1-L, r \leq L<K$
- Trajectory matrix

$$
\mathbf{X}=\left(\begin{array}{cccc}
f_{0} & f_{1} & \cdots & f_{K-1} \\
f_{1} & f_{2} & \cdots & f_{K} \\
\vdots & & & \vdots \\
f_{L-1} & f_{L} & \cdots & f_{N-1}
\end{array}\right)
$$

- SVD

$$
\mathbf{X} \mathbf{X}^{T}=\sum_{m=1}^{L} \sqrt{\lambda_{m}} U_{m} U_{m}^{T}, \quad \mathbf{X}=\sum_{m=1}^{L} \sqrt{\lambda_{m}} U_{m} V_{m}^{T}
$$

- Reconstructed series (RS) is orthogonal projection (diagonal averaging) of $\sum_{m=1}^{r} \sqrt{\lambda_{m}} U_{m} V_{m}^{T}$
- Forecast using LRF and RS

Linear Reccurent Formula (LRF)

LRF of r-order

$$
h_{j}=a_{1} h_{j-1}+\ldots+a_{r} h_{j-r}
$$

Characteristic polynomial of the LRF

$$
P(t)=t^{r}-a_{r}-a_{r-1} t-\ldots-a_{1} t^{r-1}
$$

- From SSA theory, there is a unique minimal LRF (it is of order equal to the rank of time series) and many LRFs of greater order.
Example.
Suppose $h_{j}=\sum_{m=1}^{r} c_{m} e^{2 \pi \lambda_{m} j}, \lambda_{m} \neq \lambda_{s} \in \mathbb{C}$.
Then $P(t)=\prod_{m=1}^{r}\left(t-\lambda_{m}\right)$ for minimal LRF.

Calculation of LRF

- SSA LRF has order L and $P(t)=p^{T}\left(1, t, \ldots, t^{L}\right)$ where

$$
\begin{gathered}
p=U_{r+1, L} U_{r+1, L}^{T} e_{L}^{T} \\
U_{r+1, L}=\left(U_{r+1} \vdots \ldots \vdots U_{L}\right), e_{L}=(0, \ldots, 0,1)^{T} \in \mathbb{R}^{L}
\end{gathered}
$$

- LRF of ESPRIT has order r and $P(t)$ equal to a characteristic polynomial of the matrix $\overline{U_{1, r}}{ }^{+} \underline{U_{1, r}} \in \mathbb{R}^{r \times r}$ where

$$
U_{1, r}=\left(U_{1} \vdots \ldots \vdots U_{r}\right)
$$

$h_{j}=3 \cdot 1.01^{j}+0.5 \sin (2 \pi j / 10), r=3, N=100, L=20$
red - minimal true LRF
green - ESPRIT LRF
blue - SSA LRF

$h_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), r=4, N=100, L=30$
red - minimal true LRF
green - ESPRIT LRF
blue - SSA LRF

Why e_{L} in SSA LRF?

$P(t)=p^{T}\left(1, t, \ldots, t^{L}\right)$

$$
p=U_{r+1, L} U_{r+1, L}^{T} e_{L}^{T}
$$

Consider a general form

$$
p=U_{r+1, L} U_{r+1, L}^{T} q^{T}, \quad q \in \mathbb{R}^{L}
$$

Rewrite in a form

$$
p=U_{r+1, L} w=\sum_{j=1}^{L-r} w_{j} U_{j+r}, w=\left(w_{1}, \ldots, w_{L-r}\right)=U_{r+1, L}^{T} q^{T} \in \mathbb{R}^{r}
$$

Plot of roots of $P(t)$ for different LRF

$$
\begin{aligned}
& P(t)=p^{T}\left(1, t, \ldots, t^{L}\right), p=U_{r+1 . I} w \\
& h_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), r=4, N=100, L=20 \\
& \text { red }-p=U_{r+1}, w=e_{1} \\
& \text { green }-p=U_{r+2}, w=e_{2} \\
& \text { blue }-p=U_{r+3}, w=e_{3}, \text { magenta, cyan, black }
\end{aligned}
$$

Why e_{L} in SSA LRF?

$P(t)=p^{T}\left(1, t, \ldots, t^{L}\right)$

$$
p=U_{r+1, L} U_{r+1, L}^{T} q^{T}
$$

p is a projection of q to subspace generated by columns of $U_{r+1, L}$ $P(t)$ is a projection of $Q(t)=q^{T}\left(1, t, \ldots, t^{L}\right)$ to some subspace of polynomials.

How roots of $P(t)$ and $Q(t)$ are connected?

$$
\begin{aligned}
& P(t)=p^{T}\left(1, t, \ldots, t^{L}\right), \quad p=U_{r+1, L} U_{r+1 . L}^{T} q^{T}
\end{aligned}
$$

$$
\begin{aligned}
& h_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), r=4, N=100, L=20 \\
& \text { red }-Q(t)=t^{L}, \quad \text { magenta }-Q(t)=t^{L}+1 \\
& \text { blue }-Q(t)=t^{L}-0.95^{L}, \quad \text { green }-Q(t)=t^{L}-1.05^{L} \text {, } \\
& \text { cyan }-Q(t)=(t-0.2)^{L}
\end{aligned}
$$

$$
p=U_{r+1, L} U_{r+1, L}^{T} e_{L}^{T}
$$

$h_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), r=4, N=100, L=30$
red - true time series $\left(h_{1}, \ldots, h_{N}\right)$
cyan - time series with noise $\left(f_{1}, \ldots, f_{N}\right)$
green - forecast by ESPRIT LRF
blue - forecast bv SSA IRF

Different LRF for investigation

-F1 true minimal LRF for RS
-F2 minimal LRF estimated via ESPRIT for RS
-F3 SSA LRF for RS
-F4 SSA LRF with replacement the phases of the main roots by true phases for RS
-F5 SSA LRF for true series
-F6 true SSA LRF for RS

Questions

- relation between F1 (true minimal LRF), F2 (ESPRIT LRF) and F3 (SSA LRF)
- relation between F3 and F4. What happen if we rewrite the phases of the main root by true phases in SSA LRF
- relation between F3 and F4+F5. How SSA LRF error splitts to the error related to the coefficients of LRF and the error from initial conditions for LRF
- dependence on L

Error is $\sqrt{\sum_{i=N+1}^{N+10}\left(h_{i}-\hat{h}_{i}\right)^{2} / 10}$ where \hat{h}_{i} is a forecast value of h_{i}.

Models

$$
f_{j}=h_{j}+\varepsilon_{j} \quad, j=1, \ldots, N, \quad N=100
$$

- $h_{j}=1.1 \sin (2 \pi j / 10), r=2$
- $h_{j}=3 \cdot 1.01^{j}+0.5 \sin (2 \pi j / 10), r=3$
- $h_{j}=\sin (2 \pi j / 17)+0.5 \sin (2 \pi j / 10), r=4$
- $h_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), r=4$
$L=20,30,40,50$
ε_{j} are i.i.d. $\mathrm{N}\left(0, \sigma^{2}\right), \sigma=0.5,0.1$

Average forecast errors, $h_{j}=1.1 \sin (2 \pi j / 10), r=2$, $\sigma=0.5$

L	F1	F2	F3	F4	F5	F6
20	0.165	0.179	0.161	0.149	0.043	0.133
30	0.141	0.154	0.148	0.131	0.052	0.113
40	0.136	0.150	0.152	0.130	0.061	0.106
50	0.144	0.159	0.158	0.134	0.079	0.102

-F1 true minimal LRF for RS
-F2 minimal LRF estimated via ESPRIT for 2
-F3 SSA LRF for RS

-F5 SSA LRF for true series
-F6 true SSA LRF for RS

Average forecast errors, $h_{j}=3 \cdot 1.01^{j}+0.5 \sin (2 \pi j / 10)$, $r=3, \sigma=0.5$

L	F1	F2	F3	F4	F5	F6
20	0.305	0.322	0.241	0.226	0.079	0.189
30	0.245	0.264	0.219	0.205	0.085	0.164
40	0.236	0.257	0.225	0.211	0.102	0.151
50	0.234	0.255	0.221	0.202	0.122	0.138

-F1 true minimal LRF for RS
-F2 minimal LRF estimated via ESPRIT for
-F3 SSA LRF for RS
-F4 SSA LRF with replacement of the phases of the main roots by true phases for RS
-F5 SSA LRF for true series
-F6 true SSA LRF for RS

Average forecast errors,

$h_{j}=\sin (2 \pi j / 17)+0.5 \sin (2 \pi j / 10), r=4, \sigma=0.5$

L	F1	F2	F3	F4	F5	F6
20	1.061	1.057	0.281	0.249	0.091	0.221
30	0.678	0.676	0.239	0.199	0.095	0.169
40	0.622	0.622	0.250	0.208	0.117	0.161
50	0.613	0.610	0.251	0.199	0.132	0.147

-F1 true minimal LRF for RS
-F2 minimal LRF estimated via ESPRIT for
-F3 SSA LRF for RS
-F4 SSA LRF with replacement of the phases of the main ropts true phases forms
-F5 SSA LRF for true series
-F6 true SSA LRF for RS

Average forecast errors,

$h_{j}=\sin (2 \pi j / 6)+0.5 \sin (2 \pi j / 10), r=4$

σ	L	F1	F2	F3	F4	F5	F6
0.5	20	0.320	0.337	0.259	0.232	0.079	0.205
0.5	30	0.297	0.314	0.238	0.210	0.085	0.177
0.5	40	0.261	0.283	0.242	0.207	0.101	0.165
0.5	50	0.248	0.268	0.239	0.196	0.129	0.144
0.1	20	0.058	0.062	0.047	0.043	0.012	0.039
0.1	30	0.053	0.057	0.044	0.039	0.015	0.034
0.1	40	0.047	0.051	0.045	0.039	0.018	0.032
0.1	50	0.047	0.051	0.046	0.038	0.025	0.029

-F1 true minimal LRF for RS

Conclusions

- Forecast error is decreasing as L is increasing
- Errors of ESPRIT LRF and SSA LRF are almost equal for $r=2$
- SSA LRF is the best LRF (among considered LRF) for $r>2$
- correction of the phases of the main roots by true phases in SSA LRF decrease the forecast error
- the error related to the coefficients of SSA LRF is smaller than the error from initial conditions for LRF. These errors are almost equal for $L=N / 2$

