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Abstract This paper studies the optimal experimental design for the evaluation of an ex-
tremum point of a quadratic regression function of one or several variables. Ex-
perimental designs which are locally optimal for arbitrarydimensionk among all
approximate designs are constructed (although fork > 1 an explicit form proves
to be available only under a restriction on the location of the extremum point).
The result obtained can be considered as an improvement of the last step of the
well-known Box-Wilson procedure.

Introduction

Let us consider the problem of optimal design for estimatingthe point of
extremum —�2=2�3 in the quadratic regression modelyi = �1 + �2xi + �3x2i + "i; i = 1; : : : ; n;
whereyi is the result of an observation at pointxi 2 [�1; 1℄ andf"ig are i.i.d.
random values such thatE"i = 0 andE"2i = 1.

This problem is a nonlinear one. There exist a few standard approaches
to such problems: sequential, minimax, Bayesian and locally optimal. All
these approaches have been implemented for the above model.Ford and Sil-
vey (1980) and M̈uller and P̈otscher (1992) considered sequential procedures,
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Mandal (1978), Chaloner (1989), Mandel and Heiligers (1992), Müller (1995)
and Müller and Pazman (1998) studied the problem from Bayesian orminimax
points of view.

Locally optimal designs were considered by Fedorov and Müller (1997). The
authors of that paper investigated also the multivariate regression model. They
suggested to use a known reparametrization of the problem that allows to obtain
a convenient representation of the information matrix (thereparametrization
was also used by Chatterjee and Mandal (1981), Buonaccorsi and Iyer (1986)
and others).

The present paper can be considered as a further developmentof this ap-
proach. We consider the multivariate quadratic regressionmodel on the hy-
percube[�1; 1℄k. We find, analytically, locally optimal designs for this model
under a restriction on the location of the extremum point. More precisely, our
analytical solution is appropriate if the extremum point belongs to the hypercube[�1=2; 1=2℄k.

This problem can be considered as part of a more general problem, that of
extremum point evaluation for a function of general form. Tobe specific, we will
consider estimation of the minimum point. Investigation ofthis problem was
initiated in the well-known paper by Box and Wilson (1951). The approach
to the problem, elaborated in that paper, is based on the combination of the
steepest descent technique with methods of planning factorial experiments.
Box and Wilson suggested that experiments be performed in the vicinity of a
certain basic point, according to a complete or fractional factorial design from
which a linear model can be built using the resulting observations. If this model
proves to be adequate, it gives an unbiased estimate of the function gradient.
A few test steps are then performed in the direction of the antigradient until a
decrease in the measured values of the function is observed.The last successful
point is taken as a new basic point and so on. In the vicinity ofan extremum
point the linear model will be inadequate and, when this occurs, a quadratic
model can be built for the final estimation of location of the extremum point.

A review of some other approaches to this general problem canbe found in
Pronzato and Walter (1993).

The analytical solutionelaborated in the present paper canbe used to optimize
the last stage of the Box–Wilson procedure. The formal outline of the problem
is given in Sections 1 and 2. Further, in Section 3, we formulate our basic
results. A short discussion is given in Section 4. Proofs of the basic results are
concentrated in the Appendix.

1. PRELIMINARY OUTLINE OF THE PROBLEM

Consider a quadratic function of several variables:�(x) = �(x;A; �; 
) = xTAx+ �Tx+ 
; (2.1)
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whereA is a positive definitek � k matrix,� is ak dimensional vector,
 is a
real number. This function attains, as is well known, its minimal value equal to
 = 
 � �TA�1�=4 at the pointx = x� = b = �12A�1�:

Suppose the function can only be measured with a random errorat design
pointsx belonging to the hypercubeX = [�1; 1℄k. More precisely, let the
experimental results at the design pointsx(i), i = 1; 2; : : : ; n, x(i) 2 X be
described by the equationyi = �(x(i); A; �; 
) + "i; i = 1; 2; : : : ; n; (2.2)

wheref"ig are random errors such thatE"i = 0, E"i"j = 0 i 6= j,E"2i = �2,i; j = 1; 2; : : : ; n.
Elements of the matrixA and of the vector� as well as
 are unknown. It

is required to construct an estimate of the vectorx� = b and to find an optimal
(in a sense to be yet defined) experimental design� = fx(1); : : : ; x(n);m1; : : : ;mng;
wherex(i) 2 X andmi > 0 are respectively the design point and the proportion
of the total number of available experiments to be performedat that design point,
for i = 1; 2; : : : ; n, with

Pni=1mi = 1.

2. THE APPROACH TO THE PROBLEM

Rewrite the regression function in the form��(x; �) = (x� b)TA(x� b) + 
; (2.3)

where� = (b1; : : : ; bk; a11; : : : ; akk; a12; : : : ; a1k; a23; : : : ; ak�1k; 
)T ;b = �12A�1�; 
 = 
 � �TA�1�=4:
This function depends on parametersb1; : : : ; bk in a nonlinear way. We apply

to our case well-known results for nonlinear models.
Let � = fx(1); : : : ; x(n);m1; : : : ;mng be an experimental design. Consider

the matrix M(�) =  nXl=1 ���(x(l); �)��i ���(x(l); �)��j m(l)!ri;j=1 ;r = k + k(k + 1)=2 + 1.
An immediate calculation givesM(�) = � 2A 00 I � �M(�)� 2A 00 I � ;
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whereI is the identity matrix,�M(�) = �M (�; b) = nXl=1 f(x(l))fT (x(l))ml;f(x) = f(x; b) = �(b1 � x1); : : : ; (bk � xk); (x1 � b1)2; : : : ; (xk � bk)2;(x1 � b1)(x2 � b2); : : : ; (xk�1 � bk�1)(xk � bk); 1)T :
Note that forn = r we havedet �M(�; b) = det �M(�; 0). This can be

verified through the equality�M(�; b) = F TF;whereF = �pmjfi(x(j))�ri;j=1
and linear transformations of columns of the matrixF . Then, withn � r,
the Binet-Cauchy formula states thatdet �M(�; b) 6= 0 for an arbitraryb ifdet �M(�; 0) 6= 0.

An arbitrary design� will be called anonsingulardesign ifdet �M(�; 0) 6= 0.
From the above remark we havedet �M(�; b) 6= 0 for an arbitrary vectorb if the
design� is a nonsingular design.

Consider the (nonlinear) least squares estimate of the vector � for the regres-
sion function (2.3): �̂ = argmin� NXl=1 ���(x(l); �)� yl�2 : (2.4)

Since��(x; �) = �(x;A; �; 
) we havêb = �12 �A�1 ��; where �A is the matrix
consisting of least squares estimates of elements of the matrix A in the linear
regression function�(x;A; �; 
) under the equation (2.2) and�� is the similar
estimate for�. Thus the construction of the estimate�̂ is easy.

At the same time we have the following proposition:
Proposition 2.1. Let � be an arbitrary nonsingular design and̂� be deter-

mined by (2.4), wherey1; : : : ; yN are results obtained fromNmj experiments
at pointx(j), j = 1; : : : ; n: Then�̂ is a strongly consistent estimate for� and

withN !1 the vector
pN(�̂��) has asymptotically the normal distribution

with zero expectation and the covariance matrixD�̂ = �2M�1(�):
This proposition is a particular case of results obtained inJennrich (1969).
Rewrite the matrix�M(�) in the block form�M(�) = � M1 MT2M2 M3 � ;

whereM1 is ak � k matrix. LetMs =Ms(�) =M1 �XTM3X;
whereX = M�13 M2 if the matrixM3 is nonsingular andX is an arbitrary
solution of the equationM3X =M2 otherwise. It is known (Karlin & Studden,
1966,x10.8) thatMs does not depend on the choice of the solution.
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Let � = ��1 + (1 � �)�2, where�1 is a nonsingular design and�2 is an
arbitrary design,0 < � < 1. Then the covariance matrix of

pN(b̂� b), whereb̂ is the nonlinear least squares estimate of the vectorb, takes the formDb̂(�) = �24 A�1M�1s (�)A�1:
Definition 2.1. Any design�2 minimizing the magnitudelim�!0 detDb̂(�) = ��24 �k (detA)�2 detM�1s (�2; b)

for a fixed valueb = b(0) will be called a locally optimal design for estimating
an extremum point of the regression function (2.1).Note that the locally optimal
design depends onb and does not depend on the true values ofA and
.

It is evident that for largeN the majority of experiments should be performed
in accordance with a locally optimal design whereb(0) is the current estimate
of the vectorb.

The problem of finding locally optimal designs is equivalentto the problemdetMs(�; b) ! max�; where the maximum is taken over all (approximate)
designs andb = b(0). The remainder of the paper considers the solution of this
problem.

3. BASIC RESULTS

Let k be an arbitrary natural number andb = b(0) 2 Int[�1; 1℄k . Consider
all hyperparallelepipeds with centre at the pointb inscribed in the hypercube[�1; 1℄k and take the maximal one. Let�� be the experimental design that
consists of all vertices of this hyperparallelepiped with equal weights,ml =1=n, l = 1; : : : ; n, n = 2k.

Our basic result is the following theorem:

Theorem 1. For an arbitrary k, the design�� described above is a locally
optimal design for estimation of an extremum point of the regression function
(2.1) if and only ifjbij � 12 , i = 1; 2; : : : ; k.

The result of Theorem 1 for the casek = 2 is illustrated in Fig. 2.1.
The exact analytical solution given by Theorem 1 allows us tostudy the

efficiency of the locally optimal design. This design is moreaccurate than the
usualD-optimal design for the estimation of all parameters of the regression
function (2.1). For example, supposeb = (12 ; : : : ; 12 )T . In this case we needsk times less observations to receive the same accurancy underdimensionk,
wheres1 = 1:5, s2 � 1:78, s3 � 2:08, s4 � 2:38, s5 � 2:68. We see that the
efficiency of the locally optimal design increases withk.
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Figure 2.1 Points of the design�� for k = 2.

Note that the design�� corresponds to the full factorial design. Fork � 4 it
is possible to construct a locally optimal design with the number of points less
than2k. Assume thatk � 4. Let � be a natural number such that2��1 � k; � � k: (2.5)

Letz(1); : : : ; z(n),n = 2� be distinct vertices of the hypercube[�1; 1℄� . Assign
to the numberj = � + 1; : : : ; k a vector(j1; : : : ; j�) whose components are
distinct numbers from the setf1; : : : ; �g, with � an odd number,� � 3. The
assignment is such that distinct vectors correspond to distinct numbers, which
is possible since the number of the distinct vectors equals[�=2℄Xi=2 C2i�1� = 2��1 � � � k � �:
Introduce the vectors~z(i) = (~z(i)1; : : : ; ~z(i)k)T , i = 1; 2; : : : ; n,~z(i)j = z(i)j ; j = 1; : : : ; �;~z(i)j = z(i)j1 : : : z(i)j� ; j = � + 1; : : : ; k:
Now consider the vectorsx(i) = (x(i)1; : : : ; x(i)k)T , i = 1; : : : ; n, which are
vertices of the hyperparallelepiped described above and correspond to the vec-
tors ~z(i) in such a way thatsign(x(i)j � bj) = sign(~z(i)j); i = 1; : : : ; n = 2� ,j = 1; : : : ; k. Let �+ = fx(1); : : : ; x(n); 1n; : : : ; 1ng:
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Theorem 2. If b 2 [�1=2; 1=2℄k, and k � 4, then�+ is a locally optimal
design for the estimation of an extremum point of the function (2.1).

Note that withk satisfying the inequality (2.5) we can construct a locally
optimal design�+ with n = 2� distinct points. Let�� be the minimal number
satisfying (2.5) for a givenk, and setn�(k) = 2� . It seems important that whenk increases the corresponding valuen�(k) increases very slowly. For example,
with 5 � k � 10 we haven�(k) = 16.

4. DISCUSSION

Consider the results obtained in the context of the Box-Wilson procedure.
It is evident that at the last stage of this procedure we have already a rough
estimate of the extremum point and it is only necessary to make it more exact.

If the extremum point lies rather far from the boundary of thedesign region,
it is reasonable to use the design��1 + (1 � �)�2, where�1 is the usualD-
optimal design and�2 is the locally optimal design given by Theorem 1. It can
be shown that the asymptotically best value of� is � = ��=pN , where��
does not depend onN .

However the calculation of�� is reasonably combined in practice with the
elaboration of a sequential procedure . This problem exceeds the scope of the
present article and will be considered elsewhere. If the extremum point is close
to the boundary, or outside the design region, our approach can also be applied.
However, in this case, Theorem 1 does not give a locally optimal design. This
also will be the subject of further study.

5. APPENDIX

Proof of Theorem 1
Introduce the notationf (1)(x) = f (1)(x; b), f (2)(x) = f (2)(x; b),f (1)(x; b) = (b1 � x1; : : : ; bk � xk)T ;f (2)(x; b) = �(x1 � b1)2; : : : ; (xk � bk)2 ;(x1 � b1)(x2 � b2); : : : ; (xk�1 � bk�1)(xk � bk); 1)T ;ds(x; �;X) = �f (1)(x)�XT f (2)(x)�T M�1s (�)�f (1)(x)�XT f (2)(x)� :

Note that for a fixedb = b(0), the matrix �M(�) coincides with the informa-
tion matrix for the linear regression function��T f(x; b). Therefore a locally
optimal design for estimation of an extremum point of the regression function
(2.1) is a truncatedD-optimal design for estimation of the firstk parameters
of the regression function��Tf(x; b) andvice versa. We can apply the corre-
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sponding equivalence theorem from Karlin & Studden, 1966,x10.8, which we
reformulate in a form convenient for our purpose:

Lemma 5.1. The following definitions are equivalent:
1) a design~� maximizesdetMs(�),
2) there exists a matrixX such thatM3(~�)X =M2(~�); maxx ds(x; ~�;X) = k:

Besides, if one of these conditions is fulfilled thends(~x(i); ~�;X) = k; (i =1; : : : ; n) where~x(i), i = 1; : : : ; n are the points of the design~�.
Consider now the design��. Due to the symmetry properties of the hyper-

cube, we can restrict consideration to the caseb 2 [0; 1℄k. It is easy to verify
that M1(��) = diagf(1� b1)2; : : : ; (1� bk)2g; M2 = 0; Ms =M1;M3 = M3(��) = 0� GT1G1 0 GT10 G2 0G1 0 1 1A ;
whereG1 = ((1� b1)2; : : : ; (1 � bk)2) is a row vector, andG2 = 4diagf(1� b1)2(1� b2)2; : : : ; (1� bk�1)2(1� bk)2g
is a diagonal matrix of sizek(k � 1)=2 � k(k � 1)=2.

LetXT =  diag� 12(1� b1) ; : : : ; 12(1� bk)� ; O;��1� b12 ; : : : � 1� bk2 �T! ;
whereO is the zero matrix of sizek � k(k � 1)=2. ThenM3X =M2 = 0 (2.6)

and ds(x; ��;X) = kXi=1 s2i (xi);
where si(xi) = (xi + 1� 2bi)2 � 2(1� bi)22(1� bi)2 :

The functionsi(xi) is a quadratic polynomial ands0i(xi) = 0 with xi =2bi � 1. Since forbi 2 [0; 1=2℄ we haves2i (1) = 1; s2i (2bi � 1) = 1; s2i (�1) = �1� 2bi(1� bi)2�2 � 1;
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thenmaxxi2[�1;1℄ s2i (xi) = 1 andmaxx2[�1;1℄k d(x; ��;X) = k. Therefore,
from Lemma 5.1, the design�� is a locally optimal design under the conditionb 2 [0; 1=2℄k .

Now let1 � bi > 1=2 for somei = i�. Suppose that�� is a locally optimal
design. An arbitrary solution of equation (2.6) has the formXT = (W T ...O...V );
whereW = (wij)ki;j=1 is an arbitrary matrix,O is the zero matrix of sizek � k(k � 1)=2 andV =  � kXi=1 wi1(1� bi)2; : : : ;� kXi=1 wik(1� bi)2!T :
Therefore the functionds(x; ��;X) is of the formkXi=18<:0�bi � xi � kXj=1wji �(xj � bj)2 � (1� bj)2�1A2 =(1 � bi)29=; :
For an arbitraryj = 1; : : : ; k, consider the pointsx(1) = (2b1�1; : : : ; 2bk�1)
andx(2) = (2b1 � 1; : : : ; 2bj�1� 1; 1; 2bj+1 � 1; : : : ; 2bk � 1). From Lemma

5.1ds(x; ��;X)0xi = 0 for x = x(1) and arbitraryi = 1; : : : ; k and forx = x(2)
andi 6= j. From this it follows thatwij = 0 for i 6= j andwii = 1=(2(1� bi)).
Therefore,ds(x; ��) > k at the point�x = (�x1; : : : ; �xk)T , where�xi = �jbij=bi,i = i� and�xi = 2bi � 1 otherwise. This contradicts our supposition. Hence,
in this case,�� is not a locally optimal design.

Proof of Theorem 2
It was shown in the proof of Theorem 1 that the conditionsM1(�) = diagf(1� jb1j)2; : : : ; (1 � jbkj)2g;M2(�) = O (2.7)

are sufficient for local optimality of the design� if b 2 [�1=2; 1=2℄k. Now let� = 1; : : : ; �; j1; : : : ; j� 2 f1; : : : ; �g, n = 2� . Introduce vectorsw(j1;:::;j�) 2Rn by the formulaw(j1;:::;j�)i = z(i)j1 : : : z(i)j� ; i = 1; : : : ; n:
It is easy to check that all these vectors are orthogonal to the vector(1; : : : ; 1).
Therefore, nXi=1 z(i)j1 : : : z(i)j� = 0; � = 1; : : : ; �;
if � = 1 or � � 2 and at least two of the numbersj1; : : : ; j� are distinct.

From these relationships we can verify by an immediate calculation that
conditions (2.7) are satisfied for the design� = �+ .
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