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Abstract This paper studies the optimal experimental design for #aduation of an ex-
tremum point of a quadratic regression function of one oesdwariables. Ex-
perimental designs which are locally optimal for arbitrdinensiork among all
approximate designs are constructed (althougt for1 an explicit form proves
to be available only under a restriction on the location ef éxtremum point).
The result obtained can be considered as an improvemeng ¢dshstep of the
well-known Box-Wilson procedure.

Introduction

Let us consider the problem of optimal design for estimathng point of
extremum —3, /25 in the quadratic regression model

yi = B1 + Poxi + Bsa 4+ ei, i=1,...,n,

wherey; is the result of an observation at pointe [—1, 1] and{e;} are i.i.d.
random values such théts; = 0 andEe? = 1.

This problem is a nonlinear one. There exist a few standapdoaghes
to such problems: sequential, minimax, Bayesian and lpagitimal. All
these approaches have been implemented for the above ntamdland Sil-
vey (1980) and Miller and Btscher (1992) considered sequential procedures,
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Mandal (1978), Chaloner (1989), Mandel and Heiligers (39®Riller (1995)
and Miller and Pazman (1998) studied the problem from Bayesiammimax
points of view.

Locally optimal designs were considered by Fedorov aitiéi(1997). The
authors of that paper investigated also the multivariageassion model. They
suggested to use a known reparametrization of the problaralibws to obtain
a convenient representation of the information matrix fegarametrization
was also used by Chatterjee and Mandal (1981), Buonacauadiyar (1986)
and others).

The present paper can be considered as a further develomitis ap-
proach. We consider the multivariate quadratic regressiodel on the hy-
percubd —1, 1]*. We find, analytically, locally optimal designs for this nedd
under a restriction on the location of the extremum point.réfarecisely, our
analytical solution is appropriate if the extremum poiriblogs to the hypercube
[—1/2,1/2]F.

This problem can be considered as part of a more generalgmobhat of
extremum point evaluation for a function of general form.b&specific, we will
consider estimation of the minimum point. Investigatiortlo§ problem was
initiated in the well-known paper by Box and Wilson (1951)heTapproach
to the problem, elaborated in that paper, is based on the ioatidn of the
steepest descent technique with methods of planning factxperiments.
Box and Wilson suggested that experiments be performeckinidinity of a
certain basic point, according to a complete or fractioaetdrial design from
which a linear model can be built using the resulting obderma. If this model
proves to be adequate, it gives an unbiased estimate of tietidn gradient.
A few test steps are then performed in the direction of theggeadient until a
decrease in the measured values of the function is obsefvedast successful
point is taken as a new basic point and so on. In the vicinitgroéxtremum
point the linear model will be inadequate and, when this & ca quadratic
model can be built for the final estimation of location of tlx&remum point.

A review of some other approaches to this general problenbedaund in
Pronzato and Walter (1993).

The analytical solution elaborated inthe present papdoeased to optimize
the last stage of the Box—Wilson procedure. The formal oeittif the problem
is given in Sections 1 and 2. Further, in Section 3, we forteutaur basic
results. A short discussion is given in Section 4. Prooffiefidasic results are
concentrated in the Appendix.

1. PRELIMINARY OUTLINE OF THE PROBLEM

Consider a quadratic function of several variables:

n(z) =n(z,A,B,7) = 3" Az + Tz + 9, (2.1)
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where A is a positive definité: x & matrix, 5 is ak dimensional vectory is a
real number. This function attains, as is well known, itsimal value equal to
c=~v—pTA7'B/4atthe pointr = 2* = b= —JA7!p.

Suppose the function can only be measured with a random &tresign

points 2 belonging to the hypercub& = [—1,1]*. More precisely, let the
experimental results at the design pointg, i = 1,2,...,n, z; € X be
described by the equation

yz:n(x(l)aAa/BafY)—i_gZa 221,2,,7’L, (22)

where{e;} are random errors such thét; = 0, Ec;e; = 014 # j, Ee? = 02,
i,j=1,2,...,n.

Elements of the matriXd and of the vectop as well asy are unknown. It
is required to construct an estimate of the veetor b and to find an optimal
(in a sense to be yet defined) experimental design

E={zy, - Tmyimi, ..My},

wherez ;) € X andm; > 0 are respectively the design point and the proportion
of the total number of available experiments to be perforatditat design point,
fori =1,2,...,n,with) " ;m; = 1.

2. THE APPROACH TO THE PROBLEM

Rewrite the regression function in the form

i(z,0) = (z — b)TA(z — b) +c, (2.3)
where
O = (Drseeeybps@ily s Gy @125 ey Qs G2, - -« s G 1fs C) s
b = —%A‘lﬁ, c=y-pTAT'B/4.

This function depends on parametgys. . . , b, inanonlinear way. We apply
to our case well-known results for nonlinear models.

Let = {z(1);-- -, Z(n); m1, ..., my } be an experimental design. Consider
the matrix
n _ _ r
on(zq,0) on(zq,0)
M(§) = (E m) ;

r=k+k(k+1)/2+1.
An immediate calculation gives

mo=( % D)o (% Y).
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wherel is the identity matrix,
M) = M(ED) = flew)fM (@g)m,
=1

fl@) = f(@,b) = ((b1 —21),..., (bk — z), (w1 — b1)°, ..., (zp — bp)?,
(21 — by) (@2 — by), ..., (Th—1 — bp—1) (mr — bg), )T

Note that forn = r we havedet M (£,b) = det M(£,0). This can be
verified through the equality/ (¢,b) = FT F,whereF = (\/mfi(x(j)))i,jzl
and linear transformations of columns of the matfix Then, withn > r,
the Binet-Cauchy formula states théit M (£,b) # 0 for an arbitraryb if
det M (¢,0) # 0.

An arbitrary desigig will be called anonsingulardesign ifdet M (¢, 0) # 0.
From the above remark we halet M (¢, b) # 0 for an arbitrary vectob if the
designé is a nhonsingular design.

Consider the (nonlinear) least squares estimate of themgr the regres-
sion function (2.3):

N
0 = arg meinz (ﬁ(:v(l), 0) — yl)2 . (2.4)
1=1

Sincei)(z,0) = n(z, A, B,7) we haveh = —3A~! 3, where A is the matrix
consisting of least squares estimates of elements of thexmain the linear
regression functiom(z, A, 3,) under the equation (2.2) arftlis the similar
estimate for3. Thus the construction of the estimatés easy.

At the same time we have the following proposition:

Proposition 2.1. Let¢ be an arbitrary nonsingular design artbe deter-
mined by (2.4), wherg, ..., yy are results obtained fronVm ; experiments
at pointzjy, j = 1,...,n. Thend is a strongly consistent estimate fdrand

with N — oo the vectorn/ N (é —60) has asymptotically the normal distribution
with zero expectation and the covariance mafix = o> M~ ().
This proposition is a particular case of results obtainedeimrich (1969).
Rewrite the matrix\ (¢) in the block form

- T
e = (4 5 ).

whereM; is ak x k matrix. Let
M, = M,(&) = M, — XT M3 X,

where X = MglMQ if the matrix M3 is nonsingular andX is an arbitrary
solution of the equatioM; X = M, otherwise. Itis known (Karlin & Studden,
1966,510.8) thatM; does not depend on the choice of the solution.
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Let ¢ = &y + (1 — )&y, whereé; is a nonsingular design argd is an
arbitrary design) < o < 1. Then the covariance matrix §fN (b — b), where
b is the nonlinear least squares estimate of the véctakes the form

g

2
D) = AT M, (A

Definition 2.1. Any desigrt, minimizing the magnitude

2

k
lim det D; (¢) = (%) (det A)~% det M, ! (&, b)

for a fixed valueh = b(®) will be called a locally optimal design for estimating
an extremum point of the regression function (2Ngte that the locally optimal
design depends dnand does not depend on the true valued @ndc.

Itis evident that for largeV the majority of experiments should be performed
in accordance with a locally optimal design whéf® is the current estimate
of the vectorn.

The problem of finding locally optimal designs is equivaltnthe problem
det M,(¢,b) — max,, where the maximum is taken over all (approximate)
designs and = 5(%). The remainder of the paper considers the solution of this
problem.

3. BASIC RESULTS

Let k be an arbitrary natural number ahd= b(©) € Int[—1,1]*. Consider
all hyperparallelepipeds with centre at the pdintscribed in the hypercube
[—1,1]* and take the maximal one. Lét be the experimental design that
consists of all vertices of this hyperparallelepiped witjua weights,m; =
1/n,l=1,...,n,n =2k

Our basic result is the following theorem:

Theorem 1. For an arbitrary &, the desigr¢* described above is a locally
optimal design for estimation of an extremum point of theeggjon function
(2.1)ifand only iflp;| < 1,i=1,2,...,k.

The result of Theorem 1 for the cake= 2 is illustrated in Fig. 2.1.

The exact analytical solution given by Theorem 1 allows usttaly the
efficiency of the locally optimal design. This design is maceurate than the
usual D-optimal design for the estimation of all parameters of tgression
function (2.1). For example, suppose= (3....,3)T. In this case we need
sk times less observations to receive the same accurancy dimdensionk,
wheres; = 1.5, so ~ 1.78, s3 ~ 2.08, s4 ~ 2.38, s5 ~ 2.68. We see that the

efficiency of the locally optimal design increases with
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Figure 2.1 Points of the desigg* for k = 2.

Note that the desigé* corresponds to the full factorial design. Fop 4 it
is possible to construct a locally optimal design with thenber of points less
than2®. Assume that > 4. Letr be a natural number such that

>k v<k. (2.5)

Letz(y), .., 2m), n = 2" be distinct vertices of the hypercupel, 1. Assign
to the numbey = v + 1,...,k a vector(jy, ..., jo) Whose components are
distinct numbers from the sét, . .., v}, with & an odd numberx > 3. The
assignment is such that distinct vectors correspond tmdistiumbers, which
is possible since the number of the distinct vectors equals

v/2]
2031_1:2”_1—1/2k:—1/.
=2

Introduce the vectorg;y = (Z(y1.-- .. Za) 21 =1,2,...,n,

Zij = Zap J=1,...,1,
i(i)]’ = Z(i)j1"'z(i)jaaj:V+1,...,k.

Now consider the vectors;;y = (z(;)1; - - - ,x(i)k)T,i = 1,...,n, which are
vertices of the hyperparallelepiped described above arrdsymond to the vec-
tors Z(;) in such a way thatign(z;); — b;) = sign(Zy;);),i = 1,...,n = 2",
j=1,...,k Let

1
e

S|

£+ = {x(l)’ ax(n),
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Theorem 2. If b € [-1/2,1/2]%, andk > 4, then¢™ is a locally optimal
design for the estimation of an extremum point of the fund®1).

Note that withk satisfying the inequality (2.5) we can construct a locally
optimal desigre¢ ™ with n = 2¥ distinct points. Let* be the minimal number
satisfying (2.5) for a give, and set:* (k) = 2¥. It seems important that when
k increases the corresponding vaitigk) increases very slowly. For example,
with 5 < k£ < 10 we haven*(k) = 16.

4. DISCUSSION

Consider the results obtained in the context of the Box-&Milprocedure.

It is evident that at the last stage of this procedure we h&eady a rough
estimate of the extremum point and it is only necessary toenitakore exact.

If the extremum point lies rather far from the boundary ofdlesign region,
it is reasonable to use the desigt; + (1 — o), where¢; is the usualD-
optimal design and, is the locally optimal design given by Theorem 1. It can
be shown that the asymptotically best valueno o = o*/v/N, wherea*
does not depend oN.

However the calculation a* is reasonably combined in practice with the
elaboration of a sequential procedure . This problem exxaerscope of the
present article and will be considered elsewhere. If theeexim point is close
to the boundary, or outside the design region, our approackaiso be applied.
However, in this case, Theorem 1 does not give a locally agtaasign. This
also will be the subject of further study.

S. APPENDIX

Proof of Theorem 1
Introduce the notatiorf (V) (z) = f()(z,b), fP(z) = f@(z,b),

f(l) (Q?, b) = (bl —T1,.. bk - mk)Ta
f(Q)(CU,b) = ((iUl—bl a"'ﬂ(xk_bk)Q )
(21 = b1) (w2 — ba), ..., (wh—1 — bp—1) (g — ), )7,

d(z.6.X) = (f0@) - XTFO@) M) (10 (@) - XT O (@)

Note that for a fixedh = b(), the matrixM (¢) coincides with the informa-
tion matrix for the linear regression functidd f(z,b). Therefore a locally
optimal design for estimation of an extremum point of theesgion function
(2.1) is a truncated>-optimal design for estimation of the firstparameters
of the regression functioi’ f(z, ) andvice versa We can apply the corre-
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sponding equivalence theorem from Karlin & Studden, 1966,8, which we
reformulate in a form convenient for our purpose:

Lemma 5.1. The following definitions are equivalent:

1) a desigrt maximizeslet M, (),

2) there exists a matriX such that

M3(£)X = MQ(E)? mgxds(a:,g,X) = k.

Besides, if one of these conditions is fulfilled th@(@(i>,§,X) =k (i =
1,...,n) wherez,i = 1,...,n are the points of the design
Consider now the desigfi. Due to the symmetry properties of the hyper-
cube, we can restrict consideration to the dase|[0, 1. Itis easy to verify
that
Mi(¢") = diag{(1—t)?%...,(1—b)%}, My =0, My = M,
GTa, o GT
My = Mg(g*)( 0 Gy 0 )
G 0 1
where

G1 = ((1—=0)2...,(1—b)?) is arow vector, and
Gy = 4diag{(1 —b)%(1 —b2)%, ..., (1 = bp_1)*(1 — by)?}

is a diagonal matrix of sizé(k — 1)/2 x k(k —1)/2.
Let

1 1 1-b 1—b\ 7
T _ | 4 _ 1 _ k
X _(dlag{Q(l—bl)"”’2(1—bk)}’0’( 5 5 > ),

whereO is the zero matrix of sizé x k(k — 1)/2. Then

M3X =M, =0 (2.6)
and
k
dy(z, 6, X) = 57 (i),
i=1
where

(zi+1—2b;)% —2(1 — b;)?
2(1 — b;)?

si(zi) =

The functions;(z;) is a quadratic polynomial an (z;) = 0 with z; =
2b; — 1. Since forb; € [0,1/2] we have

s2(1) =1, s2(2b; — 1) =1, s2(=1) = o2 2<1
7 [ 1 FE) (1—[)1)2 = &
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thenmax, ¢(_y 157 (z:) = 1 andmax,¢(_y 1 d(z, &, X) = k. Therefore,
from Lemma 5.1, the desigft is a locally optimal design under the condition
be0,1/2).

Now let1 > b; > 1/2 for some; = i*. Suppose that* is a locally optimal
design. An arbitrary solution of equation (2.6) has the form

xT=wTow),
whereW = (wq;)};_, is an arbitrary matrixO is the zero matrix of size
kxk(k—1)/2and

k k !
V= <_Z“’i1(1—bz‘)Qa---,—Zw"k(l_bi)2> |
i=1 i=1

Therefore the functiod, (z, £*, X) is of the form

2
k

k
S bi—mi =D wyi [(z—b)? = (1=0)°] | /(1 1)
i=1 j=1
Foran arbitraryj = 1,..., k, consider the pointg ;) = (201 —1,...,2b; —1)
andz(y) = (2b1 —1,...,2bj_1 —1,1,2b;41 — 1,...,2b; — 1). From Lemma
5.1ds(x,§*,X)'xi = 0forz = z(;)and arbitrary = 1,..., k and forz = x(,)
andi # j. From this it follows thatw;; = 0 for i # j andw;; = 1/(2(1 —b;)).
Therefored,(z, £*) > k at the point = (z1,...,Zx)", wherez; = —|b;|/b;,
1 = 1" andZ; = 2b; — 1 otherwise. This contradicts our supposition. Hence,
in this case¢* is not a locally optimal design. |
Proof of Theorem 2
It was shown in the proof of Theorem 1 that the conditions

Mi(§) = diagl{(1—[bl)2,.... (1= |be))?}, 27
M) = O
are sufficient for local optimality of the designif b € [—1/2,1/2]*. Now let
a=1,....v,51,..., 0 €{l,...,v},n = 2" Introduce vectors;, ;.)€
R" by the formula
w(jl,---,ja)i = Z(l)]l .. Z(Z)]a, 7= ]., ey N
It is easy to check that all these vectors are orthogonakteelstor(1, ..., 1).

Therefore,

i=1

if « =10ra > 2and at least two of the numbefs ..., j, are distinct.
From these relationships we can verify by an immediate tatiom that

conditions (2.7) are satisfied for the desiga- £ . [ |



24

References

Box, G.E.P. and Wilson, K.B. (1951). On the experimentaiathent of opti-
mum conditionsJ. Royal Statistical So® 13, 1-38.

Buonaccorsi, J.P. and lyer, Y.K. (1986). Optimal designsr&tios of linear
combinations in the general linear mod#sP113, 345—-356.

Chaloner, K. (1989). Optimal Bayesian experimental defigrestimation of
the turning point of a quadratic regressiddommunications in Statistics,
Theory and Method&8, 1385—-1400.

Chatterjee, S.K. and Mandal, N.K. (1981). Response sudasgns for esti-
mating the optimal pointBull. Calcutta Statist. Ass30, 145-169.

Fedorov, V.V. and Miller, W.G. (1997). Another view on optimal design for
estimating the point of extremum in quadratic regressidetrika 46, 147-
157.

Jennrich, R.J. (1969). Asymptotic properties of non-limleast squares esti-
mators.Ann. Math. Stat40, 633-643.

Karlin, S. and Studden, W. (1966)chebysheff Systems: with Application in
Analysis and StatisticsNew York: Wiley.

Mandal, N.K. and Heiligers, B. (1992). Minimax designs fatimating the
optimum point in a quadratic response surfal®P131, 235-244.

Mandal, N.K. (1978). On estimation of the maximal point afigle factor
guadratic response functioBull. Calcutta Statist. Asso7, 119-125.

Miuller, W.G. and Btscher, B.M. (1992). Batch sequential design for a noaline
estimation problem. IModel-Oriented Data Analysis Bds V.V. Fedorov,
W.G. Muller and I. Vuchkov, pp. 77-87. Heidelberg: Physica-\grla

Muller, Ch.H. (1995). Maximin efficient designs for estinmgtinonlinear as-
pects in linear modeldSPI144, 117-132.

Muller, Ch.H. and Pazman, A. (1998). Applications of necgsaad sufficient
conditions for maximin efficient designkletrika 48, 1-19.

Pronzato, L. and Walter, E. (1993). Experimental designefstimating the
optimum point in a response surfadeta Applic. Mathemat33, 45-68.



