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Abstract. Testing of model fitting for alternative nonlinear model comparisons
within the parametric approach is traditionally a difficult topic due to the com-
plexity of studying the null distribution of test statistics. The nonparametric per-
mutation approach is a flexible method, suitable to be implemented for nonlinear
models. In this paper, we introduce a novel algorithm within the nonparametric per-
mutation framework able to perform proper inference on parameters of any specified
nonlinear model. The algorithm, although general in its kind, offers a well-rounded
approach to make inference via permutation test. Finally, we show the usefulness
of the proposed method by applying it for making inference on parameters of a
nonlinear aging curve for refrigerated vehicles.
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1 Nonparametric permutation inference on linear
models

Permutation tests are conditional inferential procedures where conditioning
is performed with respect to the sub-space associated with the set of suffi-
cient statistics under the null hypothesis for all nuisance entities, including
the underlying, known or unknown, distribution. For details, see Edgington
(1995) and Pesarin (2001). The observed dataset is always a set of suffi-
cient statistics under the null hypothesis for whatever underlying distribu-
tion. Therefore, permutation tests can be viewed as nonparametric inferential
procedures, conditioned to the space generated by all possible data assign-
ments. Provided that the null hypothesis implies the exchangeability of data,
in the framework of permutation tests, the reference distribution of a rele-
vant test statistic is then constructed by calculating its value for all possible
permutations (re-orderings) of the observations. Thus a p-value can be com-
puted as the proportion of the permutation values of the statistic that are
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equal to or greater than the observed value. For a more detailed introduction
on permutation tests, we refer the reader to Pesarin (2001).

With regard to inference on linear models, permutation tests applied to
multiple regression analysis have been proposed in the literature by Cade and
Richards (1995) and by Kennedy and Cade (1996). These authors suggested
to permute the residuals which are calculated with respect to estimated re-
gression models. The model parameters can be estimated using the least
squares method (ter Braak, 1992; Kennedy and Cade,1996) or the least ab-
solute deviations method (Cade and Richards, 1995, Mielke and Berry, 2001).
Cade and Richards (1996) proposed a permutation test for hypothesis testing
on LAD (Least Absolute Deviation) regression models, based on permutation
of the observed data. The test statistic was drawn from the F test, used in
the least squares regression to evaluate the goodness of the estimated models.
Kennedy and Cade (1995) employed the permutation test in the comparison
of nested models evaluated using the least squares method. They showed
that this permutation strategy is valid only when the effects which are not
under testing are null. Stapel and ter Braak (1994), however, showed that the
method is valid when estimating the largest possible effect, since the other
effects influence only marginally such estimation.

2 A general algorithm for permutation inference in
nonlinear models

In this section, we present a novel general residual-based algorithm for infer-
ence on a single parameter or on a subset of parameters within a nonpara-
metric permutation approach. The proposed technique is suitable for both
linear and nonlinear models.

Let us consider any specified nonlinear model

Yi = f(Xi; β) + εi, i = 1, . . . , n

where Yi is the response variable, f(•; β) is the nonlinear link function, Xi

is the vector of explicative variables and εi are exchangeable random errors
with zero mean and unknown continuous distribution P , i = 1, . . . , n. Let us
suppose an appropriate method is available to calculate β̂, i.e. the estimate
of the parameter vector β. The null hypothesis of interest is

H0 : β̃ = 0 vs. H1 : β̃ �= 0

where β̃ is a single parameter or a subset of parameters from β.
The proposed algorithm is defined by the following steps:

(i) estimate the parameter vector β from two models: the first estimate β̂0

related to the first model M0, i.e. under H0 (with the constraint β̃ = 0),

and the second estimate β̂1 related to the second model M1, i.e. under
H1 (without the constraint β̃ = 0);

(ii) calculate two vectors of estimated response values: the first Ŷ0 = f(X, β̂0)

(from the model M0) and the second Ŷ1 = f(X, β̂1) (from the model M1);
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(iii) calculate two vectors of residuals: the first R0 = Y − Ŷ0 (under H0) and

the second R1 = Y − Ŷ1 (under H1);
(iv) calculate S0, that is the observed value of an appropriate statistic S(R0, R1),

based on R0 and R1. As test statistic we propose for example

S = (SSE0 − SSE1)/SSE1

where SSE0 and SSE1 are respectively the sum of square of residuals un-
der H0 and under H1. Other residual-based statistics related to alterna-
tive model comparison (Burnham and Anderson, 2002) may be suitable;

(v) randomly permute the paired elements of R0 and R1 to obtain R∗
0 and R∗

1.
Note that the null hypothesis H0 implies the exchangeability of random
errors εi, i = 1, . . . , n, with respect to the models M0 and M1. Thus, if
H0 holds, we can randomly permute residuals;

(vi) calculate Y ∗

0
= Ŷ0 + R∗

0
and Y ∗

1
= Ŷ1 + R∗

1
;

(vii) from Y ∗
0 and Y ∗

1 , re-estimate the parameter vector β̂0 and β̂1 the two
model M0 and M1 and the corresponding residuals;

(viii) re-calculate the value of S so that we have S∗ = S(R∗
0, R

∗
1);

(ix) carry out B − 1 independent repetitions of steps (5)-(8), so that we have
S∗

j , j = 1, . . . , B, (i.e. a random sampling from the permutation distribu-
tion of S);

(x) the permutation estimated p-value p̂ for H0 vs. H1 is given by

p̂ = #(S∗
j ≥ S0)/B;

(xi) if p̂ < α, the null hypothesis H0 is rejected at the significance level α.

3 Simulation study

In this section, we evaluate the appropriateness of the proposed method
through the use of a Monte Carlo simulation study. Let us to consider the
well-known three-parameter logistic model:

Yi =
θ

1 + β2e−β3X1i
+ εi, i = 1, . . . , n.

Moreover, we assume that

θ = β1 + β4X2i + β5X3i

where X2 is a dummy variable representing some sort of possible fixed ef-
fects in Y while X3 is a numerical covariate. We set the value of parameters
as follows β1 = β2 = β3 = 1, β4 = 0.1, β5 = 0.07 and we generate the
value of numerical covariates and random errors as follows: X1i are i.i.d from
Uniform[0, 4], X2i are i.i.d from Bernoulli[1/2], X3i are i.i.d from a N(0, 1)
and εi are i.i.d from a N(0, 0.1) since such distributions seem appropriate to
represent real data configurations. Hence, possible hypotheses of interest are

- H01 : β4 = β5 = 0 vs. H11 : at least one βi, i = 4, 5 is different from 0;
- H02 : β4 = 0 vs. H12 : β4 �= 0;
- H03 : β5 = 0 vs. H13 : β5 �= 0.
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Note that the hypotheses of interest are related to any possible nonlinear
model which is alternative to the more simple three-parameter logistic model.
Hence, parameters β4 and β5 represent a possible different model which we
would like to identify using the proposed permutation testing procedure.

Suitable MatLab routines were implemented in order to numerically esti-
mate the parameters of the nonlinear model using the Nelder-Mead algorithm
(Lagarias et.al., 1999) and to execute the proposed permutation test. These
programs are available upon request by authors.

The considered simulation setting consists of 1000 Monte Carlo simula-
tions for the generation of 100 observations (n = 100), where the true values
are added to standard normally distributed random errors. For each one of
the 1000 simulated data we separately estimated the permutation p-values
(with 1000 random permutations) following the proposed algorithm for each
one of the hypotheses of interest.

Simulations under H0, which are reported here for hypothesis H01 in the
last row of Table 1, show that the test distribution follows the achievable nom-
inal levels. The rejection rates under each specific alternative are displayed
in Table 1.

Table 1. Permutation test rejection rates under H11, H12 and H13.

Hypothesis nominal level α

0.01 0.05 0.1 0.2 0.3

H11(all param.) 0.642 0.945 1.000 1.000 1.000

H12(β4) 0.079 0.424 0.782 0.970 1.000

H13(β5) 0.242 0.703 0.939 1.000 1.000

H01 (all param.) 0.007 0.027 0.082 0.178 0.260

Note that the proposed permutation tests show in general a very good
power. since they allow us to identify the true alternative for each of the
three hypotheses of interest. For example, when setting the significance level
α at 0.05, we reject the false null hypothesis H11 94.5% times, H12 42.4%
times and H13 70.3% times. Note that, the The procedure is more powerful
in presence of numerical covariate (H12) than for categorical variable (H13).

4 Application to aging curve of refrigerated vehicles

The Accord Transport Perishable (ATP), established in 1970 among some
European states and ratified in Italy in 1977, defines the precise structural
characteristics of isothermal units at controlled temperature to be used in
the transport of perishable products. Over time the insulated capacity of
refrigerated transportation vehicles tends to diminish, thus allowing for an
increase in the so-called overall coefficient of heat transfer K which represents
the insulating capacity of the equipment and is defined as K = W/(S �T )
where W is the thermal capacity required in a body of mean surface area S
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to maintain the absolute difference �T between the mean inside temperature
Ti and the mean outside temperature Te, during continuous operation, when
the mean outside temperature Te is constant. The mean surface area S of
the body is the geometric mean of the inside surface area Si and the outside
surface area Se (United Nations Economic Commission for Europe, 1970).

Several factors contribute to the increase in K: some maybe regarded as
structural deformation due to wear and tear while others are related to an in-
crease of water in the polyurethane slab. A mathematical formulation of the
aging curve was derived to study the effects that structural characteristics, as
well as operation and maintenance practices, have on the life of refrigerated
transport units. For details see Sicuro (2006). This theoretical model was de-
rived as a combination of the physical processes involved in the heat transfer
within the insulating panel and was calibrated with respect to the data avail-
able through the ATP database. This model formulation allows comparing
the effective age of different type of refrigeration units independently from
their manufacturing, structure or use.

Based on this model, the theoretical aging, Yt of a refrigeration unit at
its time-life t can be computed according to (1):

Yt = 100

(
TCt

TC0
− 1

)
θ (1)

where TC0 and TCt are the thermal conductivities respectively computed
at time t = 0 (i.e. when the refrigeration unit is new) and at time t during
the life of the unit (i.e. while the refrigeration unit is in use). These thermal
conductivities are obtained using (2) and (3).

TC0 =
2

3
(1 − K1)

(
1 − K2

2

)
K3 + K1

K4K5 + K4K5

K4 + K5
+

16

3

K8K9K10√
3.68K11

K12

(2)

TCt = 2
3 (1 − K1)

(
1 − K2

2

)
K3 + K1 (K13 · t)K14+

K1 (1 − K13 · t)
[(

Pair,t

Ptot,t

)
K4 +

(
PR,t

Ptot,t

)
K6

]
+ 16

3
K8·K9·K10√

3.68
K11
K12

(3)

where (in brackets we report the value of constants Ki, i = 1, . . . , 15) K1

(0.97) is the porosity of the polyurethane slab, which is given by the ra-
tio of the volume occupied by the air and gas and the total volume of the
slab; K2 (0.85) the fraction of volume occupied by the solid in the selected
geometrical representation of the polyurethane structure. For this particular
derivation, the insulating material is represented as in line cubic cells of equal
dimensions surrounded by a layer of gas. The constants K3 (0.29 W/mK),
K4 (0.026 W/mK), K6 (0.0078 W/mK) and K14 (0.6163 W/mK) are the
thermal conductivity coefficients of the solid, the air, the compressed gas (R)
and the water in the polyurethane slab, respectively, K5 (1000 Pa) and K7

(90000 Pa) are the initial partial pressures of the air and of the compressed
gas, respectively, Ptot,t is the total pressure in the polyurethane slab at time
t [Pa], and is given by the sum of Pair,t and PR,t, the partial pressures of the
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air and gas at time t, respectively, Pair,t and PR,t are computed according to
(4) and (5),

Pair,t = K5 + (K15 − K5) (1 − P (t, Aa)) , (4)

PR,t = K7 + P (t, AR) , (5)

K13 (3.0e-12 mc/mc-s) is the flux of condensed water in the slab; K8 (5.6704E-
8 W/mK3) is the Stephan-Boltzmann constant; K9 (298 K) is the mean
temperature of two faces of polyurethane slab; K10 (0.0005 m) is the mean
equivalent diameter of the cells and K11 (35 Kg/mc) and K12 (1200 Kg/mc)
are the densities of the foam and the solid, respectively.

In (4), K15 (101325 Pa) is the partial pressure of the air outside the
refrigeration unit and P (t, A) is a function of (6) that computes the partial
pressure of a gas at time t based on the parameter A, given by (7).

P (t, βi) =
8
√

2

1.01895π2

(
e−βit − e−9βit

9

)
(6)

βi =

(
π

2K16

)2

β̃i, i = 2, 3 (7)

where K16 (0.1 m) is the mean thickness of the polyurethane layer and βi is a
calibrated unknown parameter corresponding to the coefficient of diffusivity
of the air or of the compressed gas respectively for β̃2 and β̃3. Equation (6)
represents the mean pressure over time and across the polyurethane layer
and was derived as a simplification of the diffusivity processes of the gases
present in the polyurethane layer, based on Fick’s Law (Smith, 2004).

From an engineering point of view, the parameter θ in (1) can be inter-
preted as the aging velocity of the refrigeration unit. To account for structural
characteristics and specifications that might contribute to the overall aging of
the isothermal unit, we can represent θ as an additional linear model such as
in (8). This allows evaluating the aging results of refrigerated transportation
systems that might differ by structural factors or by method of employment.

θ = β1 + β4X1 +
∑

β5jX2j + β6X3 + β7X4 + β8X5 + β9X6

+ β10X7 + β11X8 + β12X9 + β13X10

(8)

where β1 is a constant, βi, i = 4, 6 . . . , 13, and β5j , j = 1, . . . , 10, are parame-
ters related to several possible relevant factors potentially affecting the aging
velocity. The variables under study are: X1 : type of use, X2j , j = 1, . . . , 10:
type of transported perishables (j = catering, dairy, deep frozen foods, dry,
fish, fruit and vegetables, general perishable, ice cream, meat, poultry), X3 :
number of leafs for the second door, X4 : number of leafs for the first door,
X5 : total perimeter doors, X6 : presence of refrigerating unit in the vehicle,
X7 : presence of meat rails in the roof of the vehicle, X8 : average thermal
thickness, X9 : average geometrical thickness, X10 : full working status.

In Table 2 the permutation p-values (with 1000 independent random per-
mutations) are obtained for each factor, from a database of nearly 4,000
records of measurements and real aging data, available from 1998 to 2007



Permutation Testing for Alternative Nonlinear Models 665

at the Laboratories of Chill Techniques (LCT) within the Italian National
Research Council, Construction Technologies Institute, Padova, Italy. The
LCT is one of the centers certified to measure the overall coefficient of heat
transfer in transported refrigeration systems.

Table 2. Permutation p-values associated with the analyzed factors affecting the
aging curve of refrigerated vehicles.

Factor Permutation p-value

All factors 0.001

Type of use 0.098

Type of transported perishables 0.040

Number of leafs for the second door 0.010

Number of leafs for the first door 0.001

Total perimeter doors 0.050

Refrigerating unit 0.159

Meat rails in the roof 0.003

Average thermal thickness 0.038

Average geometrical thickness 0.088

Full working 0.001

Results in Table 2 may suggest several practical conclusions. In fact, the
more relevant factors affecting the aging curve of refrigerated vehicles are
those with a smaller permutation p-value: Number of leafs for the first door
and Full working, followed by Meat rails in the roof. When these structural
characteristics are introduced in the refrigerated vehicle we can expect a great
changing in the related aging curve.

As illustration of partial results, presented in Figure 1 we have four esti-
mated aging curves considering the contribution of two significant detected
factors. More precisely:

- A: Meat rails in the roof = NO, Number of leafs for the first door = 0
- B: Meat rails in the roof = YES, Number of leafs for the first door = 0
- C: Meat rails in the roof = NO, Number of leafs for the first door = 2
- D: Meat rails in the roof = YES, Number of leafs for the first door = 2

5 Conclusions

In this work we have introduced a novel algorithm within the nonparametric
permutation framework able to perform proper inference on parameters of
any specified nonlinear model. As suggested by the simulation study and by
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Fig. 1. Four estimated aging curves by considering the contribution of few signifi-
cant detected factor.

the application to a real case study, we can state that the proposed meth-
ods offers a well-rounded approach to make inference on nonlinear models.
Therefore, in each situation where the normality assumption is hard to jus-
tify or where the null distribution of test statistics is too hard to cope with,
the proposed nonparametric procedure can be considered as a valid solution.
We believe that in many experimental and observational studies this permu-
tation approach may provide a significant contribution to successful research
related to nonlinear and also linear models.
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