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Algebraic views on classification problems

Gherardo Varando 1 and Eva Riccomagno 2

1 Introduction

We study generative classifiers for binary class over categorical predictors, that is
models of the joint probability distribution P > 0 over the predictors X ∈ X and
the class variable C ∈ {−1,+1}. Every generative classifier induce a discrimination
function,

fP = ln(P(X, C = +1))− ln(P(X, C = −1)),

such that the maximum a posteriori prediction arg maxc∈{−1,+1} P(C = c|X) is
equal to the sign of fP.

It is known that the form of the induced function fP is connected to the con-
ditional independece assumptions that hold in P [5, 4, 6]. For example the naive
Bayes assumtpion (Xi |= Xj |C) translates, for the discrimination functions, in the
following decomposition,

fP(x1, . . . , xn) =
∑
i

fi(xi). (1)

Complementarily we present a study of the set of generative classifier such that
their induced functions satisfie the factorization in Equation (1).

P∅ = {P > 0 s.t. fP =
∑
i

fi(xi)}.

2 Constant interactions models

Consider generative classifiers over two binary predictor variables X1, X2 and
define the odds ratio of the conditional distribution of the predictors given the
class variable,

α[P(X1, X2|C = c)] =
P(X1 = 0, X2 = 0|C = c) P(X1 = 1, X2 = 1|C = c)

P(X1 = 1, X2 = 0|C = c) P(X1 = 0, X2 = 1|C = c)
.

We can prove the following equivalence that characterize the set P∅.

P ∈ P∅ ⇔ α[P(X1, X2|C = +1)] = α[P(X1, X2|C = −1)].
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2Dipartimento di Matematica, Universitá degli Studi di Genova, Genova, Italy, E-

mail: riccomagno@dima.unige.it



As Fienberg [2] we consider the manifold of costant interaction as the proba-
bilities with odds ratios equal to α > 0.

M(α) = {Q > 0 s.t. α[Q] = α}.

If we parametrize a generative classifier P = P(C) P(X1, X2|C) we have that,

P ∈ P∅ ⇔ P(X1, X2|C = ±1) ∈M(α),

for some α > 0.
Obviously, naive Bayes classifiers belong to P∅, in particular they correspond

to the choice α = 1 that reduces M(1) to the manifold of independence [3, 1].
The above characterization can be extended to more than two categorical pre-

dictors, and generalizing the odds ratios we can similarly consider more complex
factorizations of the descrimination function fP.

Moreover models in P∅ can be seen as generative classifiers equivalent to the
logistic regression and thus we investigate maximum-likelihood estimation over P∅.
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