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Symbolic method of cumulants for subordinated

Brownian motions: the variance gamma case

Elvira Di Nardo1, Patrizia Semeraro2

With symbolic calculus we mean a set of manipulation techniques aiming at per-
forming algebraic calculation [4]. Symbolic calculus applies to Lévy processes since
we can represent a Lévy process through its time one moment generating function,
which has the following expression:

M(z) = exp{(K(z)− 1)}. (1)

In the ring of formal power series IR[[z]], equation (1) is well defined independently
of convergence radius [9]. Moreover if M(z) and K(z) have the following formal
power series expansions:
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∞∑
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i!
zi K(z) = 1 +

∞∑
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ci
i!
zi. (2)

then {ci} are said the formal cumulants of {ai}. Comparing (2) with (1), {ci}
result to be cumulants of the time one distribution of the Lévy process and the
moments of the Lévy process are sequence of binomial type whose coefficients are
{ci}.

Using this approach subordination of Lévy processes (see [1] and [8] as refer-
ences on Lévy processes and subordination) becomes a formal series composition
of cumulant generating functions. Therefore, using Faà di Bruno formula [4] we
can calculate the cumulants of a subordinated Lévy process starting from the
cumulants of the subordinand and of the subordinator.

Our aim is to develop an estimation procedure of the parameters of subordi-
nated Brownian motions based on polykays. Polykays are corrected estimators of
cumulant products with minimum variance [7]. We propose to apply this method-
ology in financial applications. In fact, subordinated Brownian motions are widely
used to model asset returns, having the subordinator the appealing interpretation
of economic time. In this framework, a famous subordinated Brownian motion is
the variance gamma process [5], which is constructed using a gamma subordina-
tor. Its time one moment generating function is therefore the composition of the
moment generating function of a gamma process and a Brownian motion:

logM(z) =
1

ν
log
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(
µz + σ2 z2
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) ν > 0 µ ∈ IR, σ > 0. (3)
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Since the estimate of the variance gamma parameters is still an open issue ([2], [3]
and [6]), we apply our procedure to this model.
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