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Optimum dose regimen selection for a target drug concentration

Kabir Soeny
Barbara Bogacka
Queen Mary, University of London, UK

Byron Jones
Thomas Bouillon
Novartis Pharma AG, Basel, Switzerland

In this talk we will present an optimum design for dose regimen selection in clinical trials, where
the criterion of optimality meets the requirement that the drug concentration be close to the target
drug exposure needed to cure the disease. Furthermore, in cases when the drug is a combination
of salts, we find an optimum ratio of the components as well as an optimum dosing regimen.

We define new criteria of optimality and present their properties as well as the new optimization
algorithm. We compare various dosing regimens and present a sensitivity analysis for the choice
of the model parameter values.

[ Barbara Bogacka; School of Mathematical Sciences, Queen Mary, University of London, Mile End
Road, London E1 4NS, UK ]
[ b.bogacka@qmul.ac.uk – www.maths.qmul.ac.uk/~bb ]
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Of copulas, quantiles, ranks, and spectra: an L1-approach to spectral
analysis

Holger Dette, Tobias Kley, Stanislav Volgushev

Ruhr Universität Bochum

Marc Hallin
ECARES, Université Libre de Bruxelles and ORFE, Princeton University

We present an alternative method for the spectral analysis of a strictly stationary time series
{Yt}t∈Z. We define a “new” spectrum as the Fourier transform of the differences between copulas
of the pairs (Yt, Yt−k) and the independence copula. This object is called copula spectral density
kernel and allows to separate marginal and serial aspects of a time series. We show that it is
intrinsically related to the concept of quantile regression. Like in quantile regression, which pro-
vides more information about the conditional distribution than the classical location-scale model,
the copula spectral density kernel is more informative than the spectral density obtained from the
autocovariances. In particular the approach provides a complete description of the distributions
of all pairs (Yt, Yt−k). Moreover, it inherits the robustness properties of classical quantile regres-
sion, because it does not require any distributional assumptions such as the existence of finite
moments. In order to estimate the copula spectral density kernel we introduce rank-based Laplace
periodograms which are calculated as bilinear forms of weighted L1-projections of the ranks of the
observed time series onto a harmonic regression model. We establish the asymptotic distribution
of those periodograms, and the consistency of adequately smoothed versions. The finite-sample
properties of the new methodology, and its potential for applications are briefly investigated by
simulations and a short empirical example.

[ Holger Dette; Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany ]
[ holger.dette@rub.de – www.ruhr-uni-bochum.de/mathematik3/en/dette.html ]
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Robust multiobjective optimisation

Joerg Fliege
CORMSIS, University of Southampton, UK

Ralf Werner
University of Augsburg, Germany

Motivated by Markowitz portfolio optimization problems under uncertainty in the problem data,
we consider general convex parametric multiobjective optimization problems under data uncer-
tainty. For the first time, this uncertainty is treated by a robust multiobjective formulation in
the gist of Ben-Tal and Nemirovski. For this novel formulation, we investigate its relationship
to the original multiobjective formulation as well as to its scalarizations. Further, we provide a
characterization of the location of the robust Pareto frontier with respect to the corresponding
original Pareto frontier and show that standard techniques from multiobjective optimization can
be employed to characterize this robust efficient frontier. We illustrate our results based on a
standard meanvariance problem.

[ Joerg Fliege; CORMSIS, University of Southampton, Southampton SO17 1BJ, UK ]
[ J.Fliege@soton.ac.uk – www.cormsis.soton.com ]
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Efficient computation of IMSE optimal designs of experiments

Bertrand Gauthier

Luc Pronzato
Laboratoire I3S, University of Nice-Sophia Antipolis/CNRS, France

We address the problem of computing IMSE (Integrated Mean Square Error) optimal designs for
random fields interpolation with known covariance structure.

We consider a spectral representation of the IMSE criterion obtained from the (Karhunen-Loève)
eigendecomposition of the integral operator defined by the random field covariance kernel and
the given integration measure. The IMSE criterion can then be evaluated without resorting to
the explicit integration of the MSE, and spectral truncation naturally defines an approximate
truncated-IMSE criterion, see [1].

This approach is of particular interest when a quadrature rule (i.e., a discrete integration measure)
is used to approximate the IMSE. Indeed, in this situation, both IMSE and truncated-IMSE optimal
designs are supported by quadrature points [1]. In addition, numerical experiments indicate that
retaining a small number of eigenpairs is sufficient to obtain IMSE-optimal designs, or at least
good approximations of them. A simulated-annealing based search algorithm, see [2], can then
be used for the efficient computation of IMSE optimal designs for discrete integration measures.
Several examples are presented.

References:

[1] B. Gauthier and L. Pronzato (2013), Spectral approximation of the IMSE criterion for optimal
designs in kernel-based interpolation models in review (available at http://www.i3s.unice.fr/

~bgauthie/).

[2] R. Jin, W. Chen and A. Sudjianto (2005), An efficient algorithm for constructing optimal design
of computer experiments. Journal of Statistical Planning and Inference, 134(1):268– 287.

[ Bertrand Gauthier; Laboratoire I3S, Bât, Euclide, Les Algorithmes, 2000 route des lucioles, 06903
Sophia Antipolis Cedex, France ]
[ bgauthie@i3s.unice.fr – http://www.i3s.unice.fr/~bgauthie/ ]
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Matrix optimization problems arising in matrix low-rank approxi-
mation

Jonathan Gillard

Anatoly Zhigljavsky
School of Mathematics, Cardiff University

The matrix low-rank approximation can be defined as follows. Let L, K and r be given positive
integers such that 1 ≤ r < L ≤ K. Denote the set of all real-valued L×K matrices by RL×K . Let
Mr = ML×K

r ⊂ RL×K be the subset of RL×K containing all matrices with rank ≤ r.

Assume we are given a matrix X∗ ∈ H. The problem of low rank approximation is:

f(X) → min
X∈Mr

(1)

where f(X) = ρ2(X,X∗) is a squared distance on RL×K × RL×K .

If f(·) is the standard Frobenius norm, then (1) has a unique, explicit solution given by truncating
the singular value decomposition of X∗.

In this talk we will describe optimization problems that arise when:

1. The norm f(·) is chosen to be a weighted Frobenius norm. Some of the weights may be
selected to be 0 or ∞, relating to missing and exact observations, respectively. This is known
as the weighted low rank approximation problem.

2. The constraint X ∈ Mr in (1) is replaced by X ∈ Mr ∩ H where H = HL×K ⊂ RL×K is
subset of RL×K containing matrices of some known structure (for example, Hankel). This is
known as the structured low rank approximation problem (SLRA).

For example in this talk, we will demonstrate, that for SLRA the optimization problem arising is
typically very difficult: in particular, the objective function is multiextremal even for simple cases
and possesses large Lipschitz constants. The number of local minima is a linear function of the
number of elements in X∗, yet existing methods to find a solution of the SLRA problem are solely
based on methods of local optimization. Recent discussion of this is contained in [1] and [2].

References:

[1] J. W. Gillard and A. A. Zhigljavsky. 2011. Analysis of structured low rank approximation as
an optimization problem. Informatica 22(4), pp. 489-505.

[2] J. W. Gillard and A. A. Zhigljavsky. 2013. Optimization challenges in the structured low rank
approximation problem. Journal of Global Optimization 57(3), pp. 733-751.

[ Jonathan Gillard; School of Mathematics, Cardiff University, Sennghennydd Road, Cardiff, CF24
4YH, UK ]
[ GillardJW@Cardiff.ac.uk – http://www.jonathangillard.co.uk ]
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Singular spectrum analysis as a nonparametric approach to paramet-
ric models

Nina Golyandina
St.Petersburg State University, Russia

Singular Spectrum Analysis (SSA) is known as a nonparametric method of time series analysis,
which can decompose a noisy series into a sum of identifiable components with no given model
[1-3]. In particular, SSA can extract series trends and periodicities with no parametric model of
the trends and unknown frequencies of the periodic components. However, there is a model of
time series that suits SSA very well. The signal SN = (s1, . . . , sN ) that is governed by a linear
recurrent relation (LRR) sn =

∑r
i=1 aisn−i matches SSA in the following sense: only such time

series components can be exactly extracted and continued by the SSA methods.

The set of signals governed by LRRs has a natural parametrization. In the complex-valued form,
the common term can be written down as follows:

sn =
∑

i
Pmi

(n)µn
i , (2)

where Pmi is a polynomial of degree mi. Let for simplicity mi = 1. The model (2) can be
characterized by two ways. First, the coefficients of the minimal governing LRR determine the set
of µi, and vice versa. Second, the same model is determined by the subspace that is formed by
the lagged vectors Si = (si, . . . , si+L−1)>, i = 1, . . . , N − L + 1, where L is the so called window
length, since the basis of the signal subspace spans the vectors (1, µi, . . . , µ

L−1
i )>. Therefore, one

has the choice: to deal with parametric models (2), with LRRs, or with subspaces.

The approach based on the subspace structure with no explicit estimation of µi can be called
a nonparametric approach to parametric model. Since the values of µi are not necessary for
extraction of the corresponding series components by SSA and for their SSA forecasting, Singular
Spectrum Analysis as a nonparametric approach can be considered. In the talk, arguments pro and
contra are discussed. The main argument pro is that the nonparametric approach is more stable
to deviations from the model. If, for example, the trend is approximated by several addends in
(2), then the parametric approach consists in the direct estimation of the parameters and then the
trend extraction by the obtained dependence on n. However, the procedure can be unstable. The
nonparametric SSA approach allows one to apply the methods even if the signal satisfies the model
only locally. For example, trends usually do not satisfy LRRs; however, they can be extracted by
SSA and its extensions.

Basic SSA is able to extract addends in (2) which are approximately orthogonal to the residual and
have contributions different from that of the residual components. Nonparametric extensions of
SSA for separation of not necessarily orthogonal series components with possibly equal contribu-
tions are suggested. The methods are based on the model (2) but does not estimate the component
parameters. Non-parametric approaches to multidimensional objects may be even more promising;
thereby, the multidimensional versions of SSA are also considered.

References:

[1] D.Danilov and A.Zhigljavsky (eds). Principal components of time series. SPbSU press, St.Petersburg,
1997 (in Russian)

[2] N.Golyandina, V.Nekrutrin, and A.Zhigljavsky. Analysis of Time Series Structure: SSA and
Related Techniques, CRC Press, Boca Raton, 2001.

[3] N.Golyandina and A.Zhigljavsky. Singular Spectrum Analysis for Time Series, Springer, Boca
Raton, 2013.

[ Nina Golyandina; St.Petersburg State University, Faculty of Mathematics and Mechanics, Uni-
versitetsky pr. 28, Staryj Petergof, 198504, St. Petersburg, Russia ]
[ n.golyandina@spbu.ru – gistatgroup.com ]
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Global optimization algorithms using derivatives
and their systematic testing

Dmitri E. Kvasov

Yaroslav D. Sergeyev

Calabria University, Rende (CS), Italy
N. I. Lobachevsky University of Nizhni Novgorod, Russia

A global optimization problem is considered where the objective function f(x) is a multidimensional
multiextremal and hard to evaluate function and its gradient f ′(x) satisfies the Lipschitz condition
over a hyperinterval D with an unknown Lipschitz constant K.

Different methods for solving this problem have been proposed (see, e. g., [4, 9, 11, 15–19]) that
can be distinguished either by the mode in which information about the Lipschitz constant K is
obtained or by the strategy of exploration of the search hyperinterval D.

There are several ways to specify the Lipschitz constant K: it can be given a priori (see, e. g.,
[1–3]); its adaptive estimates (local or global) can be obtained during the search (see, e. g.,
[5, 10, 13, 15, 18]); multiple estimates of the Lipschitz constant can be also used (see, e. g., [7, 8]).
All these techniques are considered in this talk, with a particular attention to the local tuning ap-
proach (see [12, 13, 15]) and a recently proposed technique (see [7, 8]) for using multiple estimates
of K (the existence of such an algorithm was a challenge for more than 15 years since the DIRECT
method working in this way with Lipschitz objective functions has been proposed in 1993, see [4]).

In exploring the multidimensional search domain, various adaptive partitioning strategies can be
applied. For example, one-point-based algorithms subsequently subdivide the search region in
smaller ones and evaluate the objective function at one point within each subregion (see, e. g.,
[3, 8]). Diagonal partitions are also very interesting for practical applications with expensive black-
box functions (see, e. g., [14, 15]). More complex partitions, based on simplices, auxiliary functions
of various nature, and so on, can be also used (see, e. g., [4, 11, 17, 19]).

A number of geometric Lipschitz global optimization methods based on constructing auxiliary
functions with the usage of different estimates of the Lipschitz constant K are presented in this
communication. These methods use either the one-point-based partition strategy or the diagonal
one. A special attention in the talk is dedicated to their testing and comparing with some well
known Lipschitz global optimization algorithms. A systematic experimental investigation of the
methods is performed by using a set of criteria specially developed (see [14, 15]) for comparing
different black-box global optimization methods.

The proposed comparison criteria are based on classes of test functions. The GKLS-generator [6]
is used for producing such test classes. It constructs three types (non-differentiable, continuously
differentiable, and twice continuously differentiable) of classes of multidimensional and multiex-
tremal test functions with known local and global minima. The generation procedure consists
of defining a convex quadratic function systematically distorted by polynomials. Each test class
provided by the generator consists of 100 functions and is defined by the following parameters:
(i) problem dimension, (ii) number of local minima, (iii) global minimum value, (iv) radius of the
attraction region of the global minimizer, (v) distance from the global minimizer to the quadratic
function vertex. The other necessary parameters are chosen randomly by the generator for each
test function of the class. A special notebook with a complete description of all functions is sup-
plied to the user. The GKLS-generator always produces the same test classes for a given set of the
user-defined parameters, allowing one to perform repeatable numerical experiments. By changing
the user-defined parameters, classes with different properties can be created. More information
can be found at: http://wwwinfo.dimes.unical.it/~yaro.

Acknowledgments. This work was supported by the Ministry of Education and Science of
Russian Federation, project 14.B37.21.0878, as well as by the grants n. 11-01-00682-a of the Russian
Foundation for Fundamental Research and n. 1960.2012.9 awarded by the President of the Russian
Federation for supporting the leading research groups.
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Posterior singular spectrum analysis

Ilkka K. Launonen
University of Oulu, Oulu, Finland

Lasse L. Holmström
University of Oulu, Oulu, Finland

A method is proposed for noise suppression in time series and finding interesting underlying fea-
tures, such as trends, maxima, minima and oscillations. A combination of Singular Spectrum
Analysis and Bayesian modeling is used where the credibility of SSA signal components are ana-
lyzed via posterior simulation.

Given a sample from a time series’ posterior distribution, the method has two steps. First, the
eigentriples are computed, applying basic SSA either on the time series or the posterior mean.
Second, the posterior sample is projected in phase space onto the one-dimensional subspaces defined
by the eigentriples, and Bayesian inference is made about the eigentriples using their associated
projected samples.

The inference is presented in visual form with credibility maps. For each SSA component relating
to an eigentriple, a map of tapered pillars of white and black on a gray background is built, with
time index and credibility level on the axes. The colors indicate whether the slope of the component
is credibly positive or negative, or neither, at the given credibility level. The credibility level relates
to the joint probability that the colored features hold and inference is thus simultaneous within a
map. Inference on the set of all SSA components is either simultaneous or separate. Components
whose maps are mostly gray are considered noise.

The potential of the technique is demonstrated using artificial and real data examples. The method
is partly motivated by the analysis of paleoclimate temperature reconstructions, which are based
on a hierarchical model with data about the fossil record preserved in glacial lake sediment.

Preprint of the published article [1] is available online at
http://cc.oulu.fi/~llh/preprints/PSSA.pdf.

References:

[1] L. Holström and I. Launonen, Posterior Singular Spectrum Analysis, Statistical Analysis and
Data Mining, (6):387–402, 2013.

[ Ilkka Launonen; Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, 90014
Oulu, Finland ]
[ ilkka.launonen@oulu.fi – http://cc.oulu.fi/~llh/group/ssa.html ]

[ Lasse Holmström; Department of Mathematical Sciences, University of Oulu, P.O. Box 3000,
90014 Oulu, Finland ]
[ lasse.holmstrom@oulu.fi — http://cc.oulu.fi/~llh/ ]
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Construction of optimum designs to discriminate among several non-
normal models

Jesus López–Fidalgo

Raúl Mart́ın–Mart́ın
Department of Mathematics, Institute of Mathematics Applied to Sciences and
Engineering, University of Castilla–La Mancha, Ciudad Real, Spain

Chiara Tommasi
Department of Economics, Business and Statistics, University of Milano, Italy

Different optimality criteria have been considered in the recent literature to discriminate between
rival models (e.g. [1], [2], [3]). Using the basic idea of discriminating between two models other
criteria may be defined for discriminating among a class of several. Most of the criteria studied
assume normality while a new criterion based Kullback–Leibler distance considers any possible dis-
tribution for each of the rival models ([4], [6]). In this work a new max–min criterion is established
for more than two rival models. This criterion seems to be more adequate for discrimination than
others previously considered in the literature ([5]). Then some theoretical results are proved in
order to produce an operative equivalence theorem. From it some algorithms are provided. Finally
an illustrative example is considered and some designs are computed.

The aim is the search of experimental designs to optimally determine which of k rival statistical
models given by their pdf’s, fi(y, x, θi), i = 1, . . . , k. Let the Kullback–Leibler distance between
two of them be

I [ft(y, x, θt), fi(y, x, θi)] =
∫

ft(y, x, θt) log
[
ft(y, x, θt)
fi(y, x, θi)

]
dy.

The KL–optimality criterion is defined through the function

Ii,t(ξ) = min
θi∈Ωi

∫

X
I [ft(y, x, θ1), fi(y, x, θi)] ξ(dx).

The “true” model in this situation will be considered as a convex combination of the pdf’s of all
the rival models, fk+1(y, x, θk+1) =

∑k
i=1 βi fi(y, x, θi), where 0 ≤ βi ≤ 1,

∑k
i=1 βi = 1. The

Efficiency of a design ξ for detecting departures from fi(y, x, θi) is defined as usual,

Effi,k+1(ξ)=
Ii,k+1(ξ)
Ii,k+1(ξ∗i )

,

where ξ∗i =arg maxξ Ii,k+1(ξ).

A new minimum efficiency criterion is defined here, which seems more adequate from a discrimi-
nation point of view,

Im(ξ) = min
i∈{1,...,k}

Effi,k+1(ξ) =
[

max
i∈{1,...,k}

1
Effi,k+1(ξ)

]−1

.

Equivalence theorem A design ξ∗m is a max-min efficiency optimum design if, and only if there
exists a measure η̄ on C(ξ∗m) such that

∫

C(ξ∗m)

ψ(x, ei, ξ
∗
m) η̄(dei) ≥ 0, fo any x ∈ χ. (3)

Iterative algorithm 1 At step l, for any subset of l models fi1 , . . . , fil
, compute

ξ̃ = arg max
ξ

Effi1,k+1(ξ)
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under the constraint Effi1,k+1(ξ) = Effi2,k+1(ξ) = · · · = Effil,k+1(ξ). If

Effr,k+1(ξ̃) > Effi1,k+1(ξ̃) = · · · = Effil,k+1(ξ̃)

for any r 6= ij with j = 1, . . . , l, then ξ̃ = ξ∗m and the procedure stops. Otherwise go back to step
2.

A numerical method for computing the design which maximizes the common efficiency in step
3 is provided in the paper. It is necessary to assume that criterion Iα(ξ) is concave in order to
guarantee there is a unique optimum design.

Iterative algorithm 2

Given a design ξs obtained at step s let

θi,s = arg min
θi∈Ωi

∫
I(fk+1, fi, x, θi)ξs(dx)

xi,s = arg min
x∈χ

I(fk+1, fi, x, θi,s),

i = 1, . . . , k.

This means xi,s is the maximum of the partial derivative

ψ(x, ei, ξ) = −Ii,k+1(ξ∗i )
∂Ii,k+1(ξ, ξx)

I2
i,k+1(ξ)

,

Let
ξs+1 = (1− αs)ξs + αsξxs ,

where ξxs =
{

x1,s · · ·xk,s

p1,s · · · pk,s

}
for pi,s = Ii,s∑

j Ij,s
. where Ii,s = I(fk+1, fi, xi,s, θi,s).
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Equilibrium in bargaining models

Vladimir V. Mazalov
Institute of Applied Mathematical Research, Petrozavodsk, Russia

We consider new trends in game-theoretical modeling of bargaining. Different approaches such
as arbitration procedures, multi-staged bargaining, auctions, reputations, stable agreements, etc.
are presented. We consider models with incomplete information related with deals between buyers
and sellers. A player (buyer or seller) has a private information about his reserved price. Reserved
prices are random variables with known probability distributions. Each player declares a price
which depends on his reserved price. If the bid price is above the ask price, the good is sold for
the average of two prices. Otherwise, there is no deal. We find an equilibrium in a n-threshold
form as a solution of a system of algebraic equations. Some results of simulations are presented.
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Locally D-optimal designs for a nonlinear multiresponse regression
model

Viatcheslav B.Melas
St.Petersburg State University, Russia

Let us consider the following nonlinear regression model

yi = η(ti, θ) + εi, ti = 1, . . . , N, (4)

where η(t; θ) =
(
η1(t; θ), η2(t; θ), η3(t; θ)

)T, ti ∈ [0,∞), i = 1, . . . , N , εi stands for measurement
noise, E{εi} = 0, E{εiε

T
j } = Rδij , δij is the Kronecker delta, R is assumed to be known. This means

that the observations at different time moments are not correlated, but there may be correlations
between individual response components for the same time moment. Let us also assume that

η1(t; θ) = exp(−θ1t), η2(t; θ) =
θ1

θ1 − θ2
[exp(−θ2t)−exp(−θ1t)], η3(t; θ) = 1−η1(t; θ)−η2(t; θ).

(5)
This model is closely connected with a problem in chemical kinetics and was studied in [1]. In that
paper it was also proved that the D-optimal design problem for model (1)-(2) is equivalent to that
for the model with two components, η1, η2 with R replaced by W−1, where W = W (R) is a 2x2
matrix. Without loss of generality we can assume that W is of the form

(
a b
b 1

)
(6)

where a and b are some given numbers.

We would like to construct locally D-optimal designs for the initial nonlinear model that coincided
with D-optimal design for the linearized model and depend on unknown proper values of parameters
θ1 and θ2 as well as of numbers a and b. Note, however, that if we multiply both parameters by
a constant, say c, and divide the argument by c our model remains the same. Thus without loss
of generality we can assume that θ1 + θ2 = c = 1 in the problem of optimal design. For arbitrary
c the optimal design support points should be simply multiplied by c. Let us introduce the new
parameter ∆ = 1− θ1, then θ2 = 1 + ∆. The support points and the corresponding weights of the
D-optimal design will be treated as functions of an auxiliary variables ∆, a and b.

In paper [1] it was analytically proved that if a and b satisfy the inequality

a + 1− 2b

a− b2
> γ∗, , γ∗ ≈ 2.872,

then the optimal design for sufficiently small ∆ consists of a single support point and does not
depend on a and b. The dependence of this point on ∆ was presented by Taylor series using
the functional approach. Here we investigate the case when the locally D-optimal design has
two support points and expend its dependence on ∆, a and b in Taylor series by the functional
approach. To this end we found analytically that the limit of the locally D-optimum design tends
to the design having two support points

{
3−√3

2
,

3 +
√

3
2

}

with weights equal to 1
2 if all these quantities tend to zero.
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On the limits of the use of OLSE variances for the design of correlated
observations

Andrej Pázman
Comenius University, Bratislava, Slovakia

Werner G. Müller
Johannes Kepler University, Linz, Austria

We discuss the circumstances for the use of the design criterion employed in Näther (1985) and
recently popularized in Dette, Zhigljavsky and Peplyshev (2013). We will point out its merits as
well as its limitations and present a simple example for the latter.
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Balancing local and global information in simplicial global optimiza-
tion algorithms

Remigijus Paulavičius

Julius Žilinskas
Vilnius University Institute of Mathematics and Informatics, Lithuania

Yaroslav D. Sergeyev
Dmitri E. Kvasov
Calabria University, Rende (CS), Italy
N. I. Lobachevsky University of Nizhni Novgorod, Russia

In this talk, we consider a global optimization problem for a Lipschitz-continuous functions with an
unknown Lipschitz constant. Recently, it has been shown that simplicial-partition-based Disimpl
algorithm [4] gives very competitive results to Direct [3] for standard test functions and performs
particularly well when the search space and the numbers of local and global optimizers may be
reduced according to symmetries [4,5]. However, Disimpl algorithm (similarly to original Direct
algorithm) quickly gets close to the optimum but takes longer to achieve a high degree of accuracy.

The present talk is concerned with overcoming this drawback by using the two-phase approach [7].
A globally-biased technique of balancing local and global information during partition is pro-
posed [6], experimentally investigated and compared with the well-known Direct and Directl [1]
methods. Extensive numerical experiments, performed on 800 test functions randomly-generated
by the GKLS-generator [2], reveal a significant improvement of the new approach implemented in
Gb-Disimpl algorithm. This advantage is more evident for harder global optimization problems.
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Optimal design for one-parameter models with correlated observa-
tions

Holger Dette
Bochum University, Germany

Andrey Pepelyshev

Anatoly Zhigljavsky
Cardiff University, UK

Suppose that results of experiments satisfy the regression model

yj = θf(xj) + εj ,

where xj ∈ [a, b].

Consider the signed LSE θ̂S for the design ξ = {x1, . . . , xn; p1, . . . , pn} and signs s1, . . . , sn ∈
{−1, 1}.
The variance of θ̂S has the form

D(ξ) =
n∑

i=1

n∑

j=1

K(xi, xj)f(xi)f(xj)sisjpipj

/( n∑

i=1

f(xi)sipi

)2

;

we consider this expression as the design optimality criterion. Denote wi = sipi and call it signed
weight of a point xi in the design ξ.

In the talk, new findings on the optimal signed designs in the case when the covariance kernel
K(·, ·) has the multiplicative structure will be presented. The research is based on our previous
results obtained in [1,2].
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On the perturbative stability of SSA and MSSA forecasts

Karl Michael Schmidt

Maria Vronskaya
Cardiff University, Wales, UK

We discuss the stability of SSA and MSSA forecasts of time series under random perturbations of
the input data, observing that some parts of the process, e.g. the SSA reconstruction of the middle
part of the time series, are surprisingly stable. For two-series MSSA, we study how the strength
of noise propagation for the forecast of the first (main) series depends on scaling of the second
(support) series. First results indicate that this may serve as a tool for the discovery of structural
relationships between the series. In particular, in view of a general analogy, despite essential
differences, of MSSA with a (stationary) VAR stochastic process, this is related to Granger’s
causality concept.

We also discuss the scaling problem for MSSA forecasting and suggest a way to overcome it, at
least partially, by linearisation.
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Design for mixed models: What is good for all need not be good for
everyone

Rainer Schwabe

Maryna Prus
Otto-von-Guericke University, Magdeburg, Germany

In data analysis random effects have become a standard when individual subjects are involved. This
is not only valid for medical or biological applications, but this approach receives also increasing
interest in economic and social sciences under the name of panel data or in official and regional
statistics under the notation of small area estimation.

In opposite to this trend the development of corresponding designs attracts less interest or is even
regarded as not substantial. This may be caused by a common believe that everything about
designs for linear mixed models is known for decades and that either standard designs should
be used, which disregard the random effects, or some true Bayesian designs, which involve the
precision of the random effects as prior knowledge.

Our aim is to demonstrate that this believe might be terribly misleading and that the use of the
proposed designs may result in an insufficient analysis. This is particularly the case, when the
subjects in the study are also the objects of investigation. Instead an Empirical Bayes approach
seems to be adequate. We finally also point out that efficient designs for statements on the mean
response in the population (“all”) may show an unsatisfactory performance for the individual
response of the subjects (“everyone”).

[ Rainer Schwabe; Otto-von-Guericke University, Institute for Mathematical Stochastics, PF 4120,
39016 Magdeburg, Germany ]
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Lipschitz global optimization

Yaroslav D. Sergeyev

Calabria University, Rende (CS), Italy
N. I. Lobachevsky University of Nizhni Novgorod, Russia

Global optimization is a thriving branch of applied mathematics and an extensive literature is ded-
icated to it (see e.g., [1–21]). In this lecture, the global optimization problem of a multidimensional
function satisfying the Lipschitz condition over a hyperinterval with an unknown Lipschitz con-
stant is considered. It is supposed that the objective function can be “black box”, multiextremal,
and non-differentiable. It is also assumed that evaluation of the objective function at a point is
a time-consuming operation. Many algorithms for solving this problem have been discussed in
literature. They can be distinguished, for example, by the way of obtaining information about the
Lipschitz constant and by the strategy of exploration of the search domain. Different exploration
techniques based on various adaptive partition strategies are analyzed.

The main attention is dedicated to two types of algorithms. The first of them is based on us-
ing space-filling curves in global optimization. A family of derivative-free numerical algorithms
applying space-filling curves to reduce the dimensionality of the global optimization problem is
discussed. A number of unconventional ideas, such as adaptive strategies for estimating Lipschitz
constant, balancing global and local information to accelerate the search, etc. are presented.

Diagonal global optimization algorithms is the second type of methods under consideration. They
have a number of attractive theoretical properties and have proved to be efficient in solving applied
problems. In these algorithms, the search hyperinterval is adaptively partitioned into smaller
hyperintervals and the objective function is evaluated only at two vertices corresponding to the
main diagonal of the generated hyperintervals. It is demonstrated that the traditional diagonal
partition strategies do not fulfil the requirements of computational efficiency because of executing
many redundant evaluations of the objective function.

A new adaptive diagonal partition strategy that allows one to avoid such computational redundancy
is described. Some powerful multidimensional global optimization algorithms based on the new
strategy are introduced. Results of extensive numerical experiments performed on the GKLS-
generator (see [2]) to test the proposed methods demonstrate their advantages with respect to
traditional diagonal algorithms in terms of both number of trials of the objective function and
qualitative analysis of the search domain, which is characterized by the number of generated
hyperintervals.

A number of possible generalizations to problems with multiextremal partially generated con-
straints is mentioned. The usage of parallel computations is discussed briefly and theoretical
results on the possible speed-up are presented.

Acknowledgments. This work was supported by the Ministry of Education and Science of
Russian Federation, project 14.B37.21.0878, as well as by the grants n. 11-01-00682-a of the Russian
Foundation for Fundamental Research and n. 1960.2012.9 awarded by the President of the Russian
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The Infinity Computer and numerical computations with infinities
and infinitesimals

Yaroslav D. Sergeyev

Calabria University, Rende (CS), Italy
N. I. Lobachevsky University of Nizhni Novgorod, Russia

The lecture introduces a new methodology allowing one to execute numerical computations with
finite, infinite, and infinitesimal numbers (see [1–19]) on a new type of a computer – the Infinity
Computer (see EU, USA, and Russian patents [8]). The new approach is based on the principle
‘The whole is greater than the part’ (Euclid’s Common Notion 5) that is applied to all numbers
(finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that
it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of
symbols as particular cases of a unique framework different from that of the non-standard analysis.
The new methodology (see survey [9]) evolves ideas of Cantor and Levi-Civita in a more applied
way and, among other things, introduces new infinite integers that possess both cardinal and
ordinal properties as usual finite numbers (its relations with traditional approaches are discussed
in [4,5]).

It is emphasized that the philosophical triad – researcher, object of investigation, and tools used
to observe the object – existing in such natural sciences as Physics and Chemistry, exists in
Mathematics, too. In natural sciences, the instrument used to observe the object influences the
results of observations. The same happens in Mathematics where numeral systems used to express
numbers are among the instruments of observations used by mathematicians. The usage of powerful
numeral systems gives the possibility to obtain more precise results in Mathematics, in the same
way as the usage of a good microscope gives the possibility to obtain more precise results in
Physics. A new numeral system allowing one to express easily infinities and infinitesimals offers
exciting capabilities for describing mathematical objects, mathematical modeling, and practical
computations. The concept of the accuracy of numeral systems is introduced. The accuracy of the
new numeral system is compared with traditional numeral systems used to work with infinity.

The new computational methodology gives the possibility to execute computations of a new type
and simplifies fields of Mathematics where the usage of the infinity and/or infinitesimals is necessary
(e.g., divergent series, limits, derivatives, integrals, measure theory, probability theory, optimiza-
tion, fractals, etc., see [1–7,9–19]). Numerous examples and applications are given. In particular,
a number of results related to the First Hilbert Problem are established.

The main attention in the lecture is dedicated to the explanation of how practical numerical
computations with infinities and infinitesimals can be executed (e.g., see [2,13,16] for applications
in optimization, numerical differentiation, and ODEs). The Infinity Calculator using the Infinity
Computer technology is presented during the talk.

Numerous research articles of several authors and a lot of an additional information can be down-
loaded from the page http://www.theinfinitycomputer.com
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Optimal design, Lagrangian and linear model theories: a fusion

Ben Torsney
School of Mathematics & Statistics, University of Glasgow

The general approximate optimal design problem (P1) aims to maximise a criterion of several
variables, subject to them being nonnegative and summing to 1. If all variables must be positive,
a necessary condition of optimality is that all vertex directional derivatives be zero; equivalently
all partial derivatives should share a common value, a Lagrange Multiplier value.

We consider the problem of optimizing a criterion of several variables, subject to them satisfying
several (non-linear) equality constraints. Lagrangian Theory requires that at an optimum all
partial derivatives be exactly linear in a set of Lagrange Multipliers. It seems we can argue that
the partial derivatives, viewed as response variables, must exactly satisfy a Linear Model with the
Lagrange Multipliers as parameters. This then is a model without errors implying a fitted model
with zero residuals. The residuals appear to play the role of directional derivatives.

Further, if we must have all variables nonnegative, we might exploit the multiplicative algorithm
for (P1). Strictly speaking this has two steps:

1. A multiplicative step, under which we multiply each variable by a positive function, say g(.),
of its vertex directional derivative or of its partial derivative;. and

2. A scaling step to ensure the variables sum to 1.

The multiplicative step naturally extends to our more general problem, but some deeper consid-
eration is needed to devise a “scaling” step to “scale” the resultant products to (approximately)
satisfy the required set of equality constraints.

We will explore this idea in the case when the variables form a matrix which must satisfy fixed row
and column sum constraints. It can be seen that partial derivatives must exactly satisfy a linear
model, additive in two sets of “main effect” parameters..
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Decomposing multivariate polynomials with structured low-rank ap-
proximation

Konstantin Usevich
Vrije Universiteit Brussel, Brussels, Belgium

We are focused on numerical methods for decomposing a multivariate polynomial as a sum of
univariate polynomials in linear forms. The main tool is the recent result on equivalence between
the Waring rank of a homogeneous polynomial and the rank of a partially known quasi-Hankel
matrix constructed from the coefficients of the polynomial. Based on this equivalence, we show that
the original decomposition problem can be reduced to structured low-rank matrix completion (or
to structured low-rank approximation in the case of approximate decomposition). Several methods
for structured low-rank approximation/completion are compared.

Notation Let R[z] and C[z] denote the vector spaces of n-variate polynomials with real and
complex coefficients, where z =

[
z1 · · · zn

]>. We also denote by Rd[z] and Cd[z] the spaces
of homogeneous polynomials of degree d, and by R≤d[z] and C≤d[z] the spaces of multivariate
polynomials with degree at most d.

Problem 1 Given a polynomial p ∈ K≤d[z], where K = R,C, decompose it into a sum of r
univariate polynomials in linear forms, i.e. find a decomposition (possibly minimal)

p(z) = p̃1(s>1 z) + · · ·+ p̃r(s>r z),

where p̃1, . . . , p̃r ∈ K≤d[t] and s1, . . . , sr ∈ Kn.

We are also interested in approximation of multivariate polynomials by sums of univariate poly-
nomials of linear forms. This problem is motivated by approximation of a multivariate function
f(z) by sums of ridge functions f̃(s>z), where s>z is a linear form and f̃ is a univariate function.
Approximation by ridge functions appears in many problems in statistics and data analysis, see
e.g. [1,2]. Recently, Problem 1 was considered in the context of identification of block-structured
nonlinear dynamical systems [3].

Problem 1 is closely related to a classical problem in algebra [4].

Problem 2 (Waring decomposition) Given a homogeneous polynomial a ∈ Cd[z], find the
minimal r and vectors s1, . . . , sr ∈ Cn such that

a(z) = (s>1 z)d + · · ·+ (s>r z)d. (7)

The minimal possible r is called the Waring rank of a (denoted by wrank(a)).

Problem 2 is equivalent to symmetric tensor decomposition of a symmetric tensor, see e.g. [5]. A
recent result [6] states that generically (for a generic polynomial a)

wrank(a) ≤ r ⇐⇒ rank H (a, e) ≤ r,

where H (a, e) is a linearly structured matrix, which is composed of the coefficients of the polyno-
mial a(z) and some unknown (latent) variables e. The matrix H (a, e) is quasi-Hankel (a multi-
dimensional generalization of Hankel matrices). Therefore, Problem 2 with known r is equivalent
to low-rank completion of the quasi-Hankel H (a, e) (finding the latent variables e given the coef-
ficients of the polynomial a, such that rankH (a, e) ≤ r).

In this talk, we extend the approach of [6] for Problem 1 (in the case K = C) by stacking together
quasi-Hankel matrices corresponding to different homogeneous components of the original polyno-
mial p(z). We compare several methods of low-rank completion of structured matrices, including
the recently proposed penalty-based method [7]. The advantage of the approach in [7] is its ability
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to solve both low-rank approximation and low-rank completion problems. In addition, the method
in [7] does not require solving systems of polynomial equations, in contrast to the method of [6].
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Experimental design and learning with ABCD: approximate Bayes
computation design
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Bayesian optimal design theory is well-established. It is shown how this can be combined with
Approximate Bayes Computation (ABC) to give a very general framework for solving optimum
experimental design problems. The present paper extends the work in [1]. A condensed version of
ABCD first sets up the general design problem for choice of a sampling distribution f(y, θ, D) for
observations Y conditional on a parameter θ, obtainable with a design D. When θ has the prior
distribution π(θ) one seeks to minimise over the choice of design the preposterior risk:

ψ(D) = min
D

EY φ{π(θ|Y, D)},

where π(θ|Y, D) is the posterior distribution, φ is some prespecified loss functional and EY is
marginal expectation with respect to Y . In ABCD we are essentially using an approximation to
π(θ|Y,D), based on the well-known ABC methods but in such a way that the often problematical
“outside” integral embodied in EY does not need additional simulation. This is because the
marginal distribution of Y is constructed as part of the ABC process. This was exploited by P.
Muller and coworkers [2], who make extensive use of MCMC. The main expense of ABCD arises
from having to vary the design D as part of the optimization process.

The method is highly suited to classical statistical learning theory, using information criteria,
which has a long history: Renyi, Lindley, de Groot and others. The key theorem (attributed to
de Groot) is that a functional φ, above, is learnable, in that its value on the prior distribution,
φ{π(θ|Y, D)}, is less than or equal to φ(D), for all f(y, θ) and all π(θ), if and only if it is a convex
functional on the space of distributions. The condition includes Shannon information (as negative
risk) and all Tsallis informations. There is also a strong connection with a majorization-type
peakness condition, in these cases. Another large class of metric-based functionals (generalised
variances) are also included with a remarkable link to metric embedding theory.

Give this strong theoretical and computational basis one can expand the notation of an experi-
mental design to cover areas such as selective sampling and other “directed attention” problems
which arise in cognitive science and computer vision. It is hoped, in this way, to contribute to
modern learning theory, often associated with machine learning.
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Multi-objective optimization algorithms
based on statistical models of objectives
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Nonlinear multi-objective optimization is very active research area. Depending on the properties
of a multi-objective optimization problem, different approaches to its solution can be applied. The
best direction developed is optimization of convex problems; for the latter problems the methods
that generalize the ideas of classical mathematical programming suit well [1]. For the problems
with not so nice objectives, metaheuristic methods are frequently favorable [2]. However, there
remains a class of important problems without sufficient attention of researchers: namely, the prob-
lems with ”black-box”, multimodal, and ”expensive” objectives. Such problems frequently occur in
applications where objectives are available either as a computational model or as software. A well
established approach to single objective optimization of ”black-box”, multimodal, and ”expensive”
objectives is based on statical models of objectives. In the present paper we discuss the possibilities
to generalize that approach to the multi-objective case. We focus on the problems where objective
functions are ”expensive” because of the complexity of the computational model; ”expensiveness”
here means long lasting computation of a value of the objective function. The complexity of the
computational model normally implies not only the ”expensiveness” of the objective function but
also the uncertainty in its properties. ”Black box” optimization of ”expensive” functions with many
respects is quite opposite to the optimization of objective functions defined by analytical formu-
lae. The limitation in collecting general information about the function, and particulary about its
minima, strongly requires the rationality in distribution the points where to compute the objective
function values. Therefore the algorithms justified by the principles of rational decision theory
here are of especial interest. To construct such algorithms in the single objective optimization
case the statistical models of multimodal functions have been proven very helpful [3],[4]. Recently
several papers have been published which propose multi-objective optimization algorithms gener-
alizing single-objective optimization algorithms based on statistical models of objective functions.
These algorithms are straightforward generalizations of the single-objective prototypes, and their
theoretical analysis is absent. In the present paper we discuss theoretical results substantiating
the use of statistical models of objective functions in multi-objective optimization algorithms, as
well as properties of the algorithms based on those models.
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On bounding vectors and bounding fronts in multi-objective branch
and bound algorithms

Julius Žilinskas
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The main concept of branch and bound is to detect subsets of feasible solutions which cannot con-
tain optimal solutions. In multi-objective optimization bounding front is used – a set of bounding
vectors in objective space dominating all possible objective vectors corresponding to the subset of
feasible solutions. The subset cannot contain Pareto optimal solutions if each bounding vector in
bounding front corresponding to this subset is dominated by at least one already known decision
vector in the current solution set. The simplest bounding front corresponds to a single ideal vector
composed of lower bounds for each objective function. However, the bounding fronts with multi-
ple bounding vectors may be tighter and therefore their use may discard more subsets of feasible
solutions. In this talk we investigate the use of bounding vectors and bounding fronts for some
multi-objective optimization problems.
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