
PECULIARITIES OF LARGE DIMENSIONS
and some repercussions

Anatoly Zhigljavsky

Cardiff University, MATHS

Cardiff, November 7, 2018



Plan

I. Large dimensions

II. Applications to global optimization

III. Other repercussions

IV. Conclusions



Chapter I. Large dimensions

where we learn that our intuition usually deceives us



Chapter I. Large dimensions

where we learn that our intuition often deceives us



Dimension

Rd

Small dimension: d = 1, 2, 3
Medium dimension: d = 10, 20 (MANY)
Large dimension: d = 100 (REALLY MANY)



Volume of the d-dimensional unit ball
B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}

Vd = vol(B(0, 1)) =
πd/2

Γ(d/2 + 1)



Volume of the d-dimensional unit ball

log10 Vd as a function of d :

F.e., V100 ' 2.368 · 10−40



d-dimensional ball

Almost all the volume is near the equator:

Th. For any c > 0, the fraction of the volume of the unit ball above the
plane x1 = c/

√
d − 1 is less than 2

c exp{−c2/2}.



d-dimensional ball

Almost all the volume is also there (in B(0, 1) \ B(0, 1− ε) with ε = c/d):

Indeed, vol(B(0, 1− ε))/vol(B(0, 1)) = (1− ε)d ' 0 for ε = c/d , large d
and c fixed but large enough.
Radius of a uniform random point has density pd(r) = drd−1, 0 ≤ r ≤ 1.



Random points in a 100-d ball; projection to 2 dimensions

B(0, 1) = {x ∈ Rd : x2
1 + x2

2 + . . .+ x2
d ≤ 1}
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d-dimensional cube and ball

Unit cube: {x = (x1, . . . , xd) ∈ Rd : |xi | ≤ 1/2}
Unit ball: B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}
Length of the cube’s half-diagonal:√(

1

2

)2

+

(
1

2

)2

+ . . .+

(
1

2

)2

=

√
d

2



d-dimensional cube



Shape of the d-dimensional cube
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Volume of the largest ball inscribed into the unit cube

Volume of the cube =1, vd = πd/2

2dΓ(1+d/2)
(volume of the ball of radius 1/2)

v2 = π
4 ' 0.78, v3 = π

6 ' 0.52 v10 ' 0.0025,
v20 ' 0.25 · 10−7, v100 ' 10−70
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‘small’ ball in-between ‘large’ ones, d ≥ 3

Cube [−1, 1]d ; centers of ‘large’ balls of radius 1
2 are (±1

2 , . . . ,
1
2 ).

Therefore the radius of the ‘small’ ball is rd = 1
2 (
√
d − 1).

F.e., r1 = 0, r2 ' 0.207, r3 ' 0.366, r4 = 1
2 , r9 = 1, r100 = 4.5
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‘small’ ball in-between ‘large’ ones, d ≥ 3

Cube [−1, 1]d ; centers of ‘large’ balls of radius 1
2 are (±1

2 , . . . ,±
1
2 ).

Therefore the radius of the ‘small’ ball is rd = 1
2 (
√
d − 1).

For d > 1205, the volume of the ‘small’ ball is larger than 2d !



Covering of the space (Conway & Sloan)

Θd (thickness) = average number of balls that contain a random point.
Some values of this thickness are:
Θ2 ' 1.2092, Θ3 ' 1.4635, Θ10 ' 5.2517, Θ20 ' 31.14.



Packing (Conway & Sloan)

∆d (density) = proportion of the space occupied by the balls.
Some values of this density are:
∆2 ' 0.906, ∆3 ' 0.74, ∆10 ' 0.099, ∆20 ' 0.0032
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Packing and covering, d = 100

Θd (thickness of covering) = average number of balls that contain a
random point.
∆d (packing density) = proportion of the space occupied by the balls.
Θ2 ' 1.2092, Θ3 ' 1.4635, Θ10 ' 5.2517, Θ20 ' 31.14
∆2 ' 0.906, ∆3 ' 0.74, ∆10 ' 0.099, ∆20 ' 0.0032

Θ100 ' 4.28 · 107 (an average point is covered more than 40 million times!)

∆100 < 10−26 (less than 0.000000000000000000000001% of the space is
occupied by the balls!)



Uniform random points on a square



Uniform points in a cube are at almost the same distance
from each other

The distribution of the distances

‖x − y‖ =

√√√√ d∑
i=1

(xi − yi )2

is concentrated around its expected value which is approximately
√
d/6.

Similar results hold for the unit ball and for the distributions different from
the uniform.



Gaussian distribution (density function)



Gaussian random vectors

If x is Gaussian N(0 , Id) then the distance from the origin

r =

√√√√ d∑
i=1

x2
i

is very close to
√
d .

More precisely, for any 0 < β <
√
d ,

Pr{
√
d − β ≤ r ≤

√
d + β} ≥ 1− 3β2/64

Two i.i.d. Gaussian vectors are almost orthogonal to each other. Similar
for uniform r.v. in a ball and in a cube.



Random projections

Johnson-Lindenstrauss Lemma. For any 0 < ε < 1 and any integer n,
let k ≥ cε2 log n for some c > 0. For any set of n points in Rd , the
random projection f : Rd → Rk has the property that for all pairs of
points vi and vj , with probability at least 1– 3

2n ,

(1− ε)‖vi − vj‖ ≤ ‖f (vi )− f (vj)‖ ≤ (1− ε)‖vi − vj‖
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Global optimization

f (x)→ min
x∈A

; x∗ = arg min
x∈A

f (x)



Random points in a ball; projection to 2 dimensions



How far are the points from the boundary? d ∈ [5, 200]

Figure: The difference y1,n − f∗ for n = 106 (solid) and n = 1010 (dashed), where
y1,n is the record of evaluations of the function f (x) = eT1 x at points x1, . . . , xn
with uniform distribution in the unit ball in the dimension d as d varies in [5, 200].



Are quasi-random points any better?

y1,n

y4,n

Figure: Boxplots of y1,n and y4,n for 500 runs with points generated from the
Sobol low-dispersion sequence (left) and the uniform distribution (right), d = 20.



Rate of convergence of the simple random search

The number of points nγ required to hit a ball or radius ε centered at the
minimizer, with probability ≥ 1− γ, for different dimensions d :

d γ = 0.1 γ = 0.05
ε = 0.5 ε = 0.2 ε = 0.1 ε = 0.5 ε = 0.2 ε = 0.1

1 0 5 11 0 6 14
2 2 18 73 2 23 94
3 4 68 549 5 88 714
5 13 1366 43743 17 1788 56911

10 924 8.8·106 9.0·109 1202 1.1·107 1.2·1010

20 9.4·107 8.5·1015 8.9·1021 1.2·108 1.1·1016 1.2·1022

50 1.5·1028 1.2·1048 1.3·1063 1.9·1028 1.5·1048 1.7·1063

100 1.2·1070 7.7·10109 9.7·10139 1.6·1070 1.0·10110 1.3·10140

nγ is roughly ε−d/Vd (multiplied by − ln γ); recall V100 ' 10−40.



Convergence: Borel-Cantelli lemma

Global random search algorithm converges if

∞∑
j=1

inf Pj(B(x∗, ε)) =∞ (1)

for any ε > 0, where B(x∗, ε)={x ∈A : ||x−x∗|| ≤ ε}; the infimum in (1)
is taken over all possible previous points and the results of the objective
function evaluations at them.
Standard choice of probability distributions to guarantee convergence:

Pj+1 = αj+1PU + (1− αj+1)Qj ,
∑
j

αj =∞ .



Example: Pj+1 = αj+1PU + (1− αj+1)Qj , αj = 1/j .

Using the approximation
∑n

j=1 αj ' ln n, we obtain
nγ ' exp{−ln γ/PU(B)}.
If A = [0, 1]d this gives nγ ' exp{−ln γ/PU(B)}.
Assuming further B = B(x∗, ε) we obtain nγ ' exp{const · ε−d}, where
const = (−ln γ)/Vd (if x∗ lies closer to the boundary of A than ε then
n(γ) is even larger).
For example, for γ = 0.1, d = 10 and ε = 0.1, nγ is a number larger than
101000000000

Even for d = 3, γ = 0.1 and ε = 0.1, the value of nγ is huge: nγ ' 10238.



Simulated Annealing (SA) and

Quantum Annealing (QA)

can they help us?
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SA and Gibbs densities

SA accepts the move xk → xk+1 w.p. 1 if f (xk+1) ≤ f (xk)
and exp(−(f (xk+1)− f (xk))/(Ktk)) if f (xk+1) > f (xk).

πβ(x) = exp{−βf (x)}
/∫

A
exp{−βf (z)}dz β = 1/(Kt) .

(A) Graph of the objective function f ; (B) Gibbs densities with β = 1
(dotted line) and β = 3 (solid line)



SA, convergence

Geman S., Geman D. ”Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images.” IEEE Transactions on pattern analysis
and machine intelligence 6 (1984): 721-741. Cited by more than 22,000.

Introduction, p.3:

Very famous argument, see e.g.
https://www.youtube.com/watch?v=OQ91L96YWCk



Geman & Geman (the theorem)



Geman & Geman (comment after the theorem)

N/logk = t ⇒ log k = exp(N/t)

N = 20000, t = 1
2 ⇒ k = exp(40000) ' 6 · 1017371

Travelling salesman with 10 cities:
N = 10! = 3628800 ⇒ k = exp(3628800) ' 6.5 · 101575967

If we take log2 from this number we get ' 5 · 106.
For 20 cities we get 20! = 2432902008176640000 and ' 7 · 1018.



SA, convergence

The formula

T (k) =
c

log k
with c = N∆

for the temperature decrease in SA is one of the most famous
formulas in optimization; see e.g. 24-th minute in the celebrated
Google talk by Hidetoshi Nishimori Theory of Quantum Annealing:
https://www.youtube.com/watch?v=OQ91L96YWCk





My comment on SA in 1985/1991

AZ(1985, 1991):



QA versus SA



QA in words

QA uses a quantum field instead of a thermal gradient. In order to explore
the landscape of the objective function, SA and its variants use ”thermal”
fluctuations associated to temperature gradients, while QA uses quantum
fluctuations.
When the QA is applied to a minimization problem, a current state is
replaced by a “neighbor state“ chosen randomly (or chosen by a more
sophisticated method).
Main area where QA may be efficient: combinatorial optimization, like the
classical “Traveling Salesman Problem”.



QA

Main idea: Hamiltonian at time t :

H(t) =
(

1− t

T

)
H0 +

t

T
Hq, 0 ≤ t ≤ T .

Suited to: QUBO (Quadratic Unconstrained Binary Optimization):

n∑
i ,j=1

Qi ,j xixj → min
x∈{−1,+1}n



QA versus SA



Quantum computer D-Wave



What have we reached with quantum computers so far?

Factorization into prime factors: 21 = 3× 7
(this was a record in 2012; now it is slightly larger, like 56153 = 233× 241)

QUBO with D-Wave:

n∑
i ,j=1

Qi ,j xixj → min
x∈{−1,+1}n

Largest n?



Can DNA computers help?



Can the infinity computer help?

Roughly, the grossone-based infinity computer operates with infinitesimals
as fast as with ordinary numbers. It’s not built yet.
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