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Pump Scheduling Optimization in Water Distribution Networks

◼ A problem usually addressed as Global Optimization (GO)

◼ The goal of PSO is to minimize the energy cost, while satisfying hydraulic/operational 
constraints

◼ A simplified formulation of the problem is the following:

min෍

𝑡=1

𝑇

𝑐𝑡𝐸(𝑥𝑡)∆𝑡

𝑠. 𝑡. 𝑥𝑡 ∈ 𝑈𝑡
◼ Where:

◼ 𝑇 is the time horizon (typically 24 hours)

◼ ∆𝑡 is the time step (typically 1 hour)

◼ 𝑥𝑡 ∈ ℝ𝑝 with p is the number of pumps (decision vector at t)

◼ 𝑈𝑡 is the feasibility set at t

◼ 𝑐𝑡 is the energy price per the unit of time [€/kWh]
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𝑥𝑡
𝑖 ∈ {0,1} if pump i is an ON/OFF pump

𝑥𝑡
𝑖 ∈ [0,1] if pump i is a Variable Speed Pump
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Pump Scheduling Optimization

◼ PSO is a typical problem in Operation Research community (Mala-Jetmarova et al., 2017)

◼ Many mathematical programming approaches (LP, IP, MILP) → they works with approximations

◼ Other approaches use simulation (i.e. EPANET 2.0)

min෍

𝑡=1

𝑇

𝑐𝑡𝐸(𝑥𝑡)∆𝑡

𝑠. 𝑡. 𝑥𝑡 ∈ 𝑈𝑡

Mala-Jetmarova, H., Sultanova, N., Savic D. (2017). Lost in Optimization of Water Distri-bution Systems? A literature review of 

system operations, Environmental Modelling and Software, 93, 209-254. 

Complex nonlinear

objective function

Hydraulic

feasibility
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Approaches based on water demand estimation/forecast

◼ Simulation-Optimization: minimizing the number of simulations required to find an optimal schedule, given
a reliable forecast of the water demand

M. Castro-Gama, Q. Pan, E. A. Lanfranchi, A. Jomoski, D. P. Solomatine, "Pump Scheduling for a Large Water Distribution Network. Milan, Italy", 
Procedia Engineering, vol. 186, pp: 436-443, 2017. 

M. Castro Gama, Q. Pan, M. A. Salman, and A. Jonoski, “Multivariate optimization to decrease total energy consuption in the water supply system 
of Abbiategrasso (Milan, Italy),” Environ. Eng. Manag. J., vol. 14, no. 9, pp. 2019–2029, 2015 

F. De Paola, N. Fontana, M. Giugni, G. Marini, and F. Pugliese, “An Application of the Harmony-Search Multi-Objective (HSMO) Optimization
Algorithm for the Solution of Pump Scheduling Problem,” Procedia Eng., vol. 162, pp. 494–502, 2016. 

Candelieri, A., Perego, R., & Archetti, F. (2018). Bayesian optimization of pump operations in water distribution systems. Journal of 
Global Optimization, 71(1), 213-235.
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❑ Although our proposed Bayesian Optimization approach is more efficient than other state-of-the-art methods, we

concluded that the real problem is not modelling the objective function but estimating the feasible region within the

search space

❑ In the Constrained Global Optimization (CGO) with unknown constraints:

❑ The set of constraints is “black-box”, they can only be evaluated along with the function

❑ Furthermore, 𝑓(𝑥) is typically black-box (itself), multi-extremal and expensive, and – more important – partially defined

Constrained GO with unknown constraints
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J. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M Smith and M. West, “Optimization under unknown constraints”, Bayesian Statistics, 9(9), 229

(2011).

J. M. Hernández-Lobato, M. A. Gelbart, M. W. Hoffman, R. P. Adams and Z. Ghahramani, “Predictive entropy search for Bayesian Optimization with unknown

constraints”, in Proceedings of the 32nd International Conference on Machine Learning, 37 (2015).

Hernández-Lobato, J. M., Gelbart, M. A., Adams, R. P., Hoffman, M. W., & Ghahramani, Z. “A general framework for constrained Bayesian optimization using

information-based search”. The Journal of Machine Learning Research, 17(1), 5549-5601, (2016).

M. A. Gelbart, J. Snoek and R. P. Adams, “Bayesian Optimization with unknown constraints”, arXiv preprint arXiv:1403.5607 (2014).

❑ We propose an approach where no assumptions on constraints are needed, the overall feasible region is modelled

through a Support Vector Machine (SVM) classifier

A. Basudhar, C. Dribusch, S. Lacaze and S. Missoum, “Constrained efficient global optimization with support vector machines”, Struct Multidiscip O, 46(2), 201-221

(2012).

BO with unknown constraints – state of the art
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❑ Hard-margin classification
Let 𝐷 = (𝑥𝑖 , 𝑦𝑖)

𝑖=1,…,𝑛
denotes a dataset of pairs, where:

• 𝑥𝑖 is a point in ℝ𝑑 and

• 𝑦𝑖 is the associated «class label»: 𝑦𝑖 = +1,−1

The goal is to find the separating hyperplane with maximum

margin:

min
1

2
𝑤 2 s.t. 𝑦𝑖 𝑤, 𝑥𝑖 − 𝑏 ≥ 1, ∀ 𝑖 = 1, … , 𝑛

Given a generic point ҧ𝑥 ∈ ℝ𝑑, the label assigned to it by the SVM classifier (depending on the «learned» 𝑤

and 𝑏) is given by sign( 𝑤, 𝑥𝑖 − 𝑏)

A remind on SVM classification
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❑ Hard-margin classification works only for linearly separable data

❑ Soft-margin classification was (initially) proposed to extend SVM to the case of non-linearly separable data

min
1

2
𝑤 2 + 𝐶෍

𝑖=1

𝑛

𝜉𝑖

s.t. 𝑦𝑖 𝑤, 𝑥𝑖 − 𝑏 ≥ 1 + 𝜉𝑖 , ∀ 𝑖 = 1, … , 𝑛

A remind on SVM classification (cont’d)
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❑ Both Hard and Soft margin classification uses a linear separation hyperplane to classify data → to overcome

limitations of linear classifier the “kernel trick” has been proposed

❑ For data not linearly separable in the Input Space,

there is a function 𝝓 which “maps” them in a Feature

Space where linear separation is possible

❑ Identifying 𝝓 is NP-hard!

❑ Kernels allow for computing distances in the Feature

Space without the need to explicitly perfom the

“mapping”

Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.

Steinwart, I., & Christmann, A. (2008). Support vector machines. Springer Science & Business Media.

A remind on SVM classification (cont’d)
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❑ The proposed formulation for CGO with unknown constraints:

min
𝑥∈Ω⊂𝑋⊂ℝ𝑑

𝑓 𝑥

Where 𝑓(𝑥) is a black-box, multi-extremal, expensive and partially defined objective function and Ω is the

unknown feasible region within the box-bounded search space 𝑋

❑ Some notations:

• 𝐷Ω
𝑛 = 𝑥𝑖 , 𝑦𝑖

𝑖=1,..,𝑛
feasibility determination dataset;

• 𝐷𝑓
𝑙 = 𝑥𝑖 , 𝑓(𝑥𝑖)

𝑖=1,..,𝑙
function evaluations dataset,

with 𝑙 ≤ 𝑛 and where 𝑙 is the number of feasible points out of the 𝑛 evaluated so far;

where 𝑥𝑖 is the i-th evaluated point and 𝑦𝑖 = {+1,−1} defines if 𝑥𝑖 is feasible or infeasible, respectively.

A two stages approach for CGO with unknown constraints
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❑ Aimed at finding an estimate ෩Ω of the actual feasible region Ω in 𝑀 function evaluations

❑ ෩Ω𝑛 is given by the (non-linear) separation hyperplane of the SVM classifier trained on 𝐷Ω
𝑛

❑ The next point 𝑥𝑛+1 to evaluate (to improve the quality of the estimate ෩Ω) is chosen by considering:

❑ Distance from the (current) non-linear separation hyperplane

❑ Coverage of the search space

min coverage = max uncertainty

Where 𝒉 𝒙 = 𝟎 is the (non linear) separation hyperplane

First Stage: Feasibility Determination
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❑ Function evaluation at 𝑥𝑛+1 and datasets update:

And if 𝑥𝑛+1 ∈ Ω (𝑖. 𝑒. 𝑦𝑛+1 = +1)

❑ The first stage ends after 𝑀 function evaluations

First Stage: Feasibility Determination
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❑ “standard” BO but:

❑ using, as a probabilistic surrogate model for 𝑓(𝑥), a GP fitted only on 𝐷𝑓
𝑙

❑ having an acquisition function (i.e. LCB) defined only on ෩Ω𝑛

❑ Function evaluation at 𝑥𝑛+1 and datasets update:

❑ Case A: 𝑥𝑛+1 ∈ Ω (𝑖. 𝑒. 𝑦𝑛+1 = +1) ❑ Case B: 𝑥𝑛+1 ∉ Ω (𝑖. 𝑒. 𝑦𝑛+1 = −1)

Must be updated

SVM must be retrainedNo need to retrain SVM

Second Stage: constrained BO

෩Ω𝑛

Ω

෩Ω𝑛

Ω

𝑥𝑛+1

𝑥𝑛+1

෩Ω𝑛+1



A simple test function: Branin 2D (rescaled) constrained to two

elipses
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Initialization First Stage – 5 evaluations First Stage – 10 evaluations

Second Stage – starting Second Stage – end

▪ Global optima (only 1 is feasible)

--- Boundaries of ෩Ω𝑛

● Infeasible evaluation (1st stage)

● Feasible evaluation (1st stage)

* Next point to evaluate 𝑥𝑛+1

▼ Feasible evaluation (2nd stage)

▼ Infeasible evaluation (2nd stage)

Red-circled points are classification erros

Points into diamonds are Support Vectors

Statistics of Big Data and Machine Learning, Cardiff, 6-8 November 2018 15



❑ The SVM+constrained BO framework resulted more effective and efficient than BO with penalty

❑ It provides both a (better) optimal solution and a good approximation of the unknown feasible region

❑ A single SVM is sufficient for approximating the feasible region, instead of one GP per constraint (computational costs

for training an SVM or a GP is 𝒪(𝑛3), with 𝑛 the number of function evaluations)

❑ The approach is particularly well suited for Simulation-Optimization problems – or any other setting where

infeasible evaluations are not “disruptive”

❑ Sensitivity analysis is not possible since the single constraints are not modelled

Summarizing…
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PSO via Approximate Dynamic Programming
Neither Supervised nor Unsupervised: Learning by doing!



Learning and Optimizing online – Goals:

◼ Identifying a policy, instead of a solution

◼ … thus, providing a robust mechanism to generate solutions online, in order to deal with 

uncertainty (i.e. on water demand)

◼ Online optimization means «decide (and act) at each decision step»

◼ From 𝑝 × 𝑇 decision variables, in typical PSO approaches, to only 𝑝 decision variables at each decision step

◼ … but balancing decisions (actions) for optimizing while learning something more about the system

◼ Information-acquisition setting: a-priori knowledge is not available → Approximate Dynamic 

Programming (aka Reinforcement Learning)
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Q-Learning

◼ A typical ADP algorithm, well known in the Reinforcement Learning community

◼ State-Action Value Function:

◼ 𝑄∗(𝑠, 𝑥) = ℛ 𝑠, 𝑥 + 𝛾 max
𝑥′

𝑄 𝑠′, 𝑥′ for all s, all x and all policies

◼ Model-free

◼ 𝜀-greedy policy to balance exploration-exploitation:

◼ with probability 𝜀 → Make a random action 𝑥

◼ with probability 1 − 𝜀→ Select the best action known so far: argmax
𝑥

𝑄(𝑠, 𝑥)

◼ Updating rule:

◼ 𝑄 𝑠, 𝑥 ← 𝑄 𝑠, 𝑥 + 𝛼 ℛ 𝑠, 𝑥 + 𝛾max
𝑥′

𝑄 𝑠′, 𝑥′ − 𝑄 (𝑠, 𝑥)
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PSO formulation as ADP problem

◼ Use Case: Anytown

◼ State Space:

◼ 𝑠𝑡 = (𝑡𝑎𝑛𝑘 𝑙𝑒𝑣𝑒𝑙, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

◼ Both tank level and average pressure discretized on 5 intervals

◼ 5x5 = 25 possible states

◼ Action Space:

◼ 𝑥𝑡 ∈ ℝ𝑝, with 𝑥𝑡
𝑖 = 0,1 ∀ 𝑖 = 1,… , 𝑝

◼ In this case study p=4 → 24 = 16 actions

◼ Reward:

◼ ҧ𝐶𝑡−1 − ҧ𝐶𝑡 where ҧ𝐶𝑡 is the cumulated cost up to t 

◼ higher the increase in cumulated cost, lower is the reward → negative reward is a «punishment» (very large in case of 
infeasibility)
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The impact of uncertainty

◼ Applying learned policy to three scenarios related to different modifications of the water demand

Scenario 1 – Actual vs forecasted demand 

(small variation)

Scenario 2 – Actual vs forecasted demand 

(larger variation)
Scenario 3 – Actual vs forecasted demand 

(entity of variationchanging from time step to 

time step)
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The impact of uncertainty - Results

22

◼ Global optimum schedule remains feasible only for the Scenario#1!!!

◼ The learned policy was able to provide a feasible schedule for each scenario (even if sub-optimal)

◼ For the solutions obtained through ADP, the cost reduction with respect to the «naive» schedule (i.e.

pumps always on) is reported
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Summarizing…

◼ Results proved that ADP/Reinforcement Learning (Q-learning):

◼ can be used for online-PSO

◼ is able to learn an optimal policy by interacting with the (pumping) system

◼ is «prediction free»

◼ is robust with respect to uncertainty (at least in terms of feasibility)
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Water Management related projects and activities

24

ICT Solutions for Efficient

Water Resources Management

Smart tEcnologie per la Gestione delle risorse

idriche ad Uso Irriguo e CIvile

CSA on smart, data driven

e-services in water management

PerFORM WATER 2030 

An innovative project pathway for water utilities towards an integrated

approach for water cycle management and its circular valorization

Piattaforma ICT per la gestione della rete idrica Milanese
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Thanks

Antonio Candelieri

antonio.candelieri@unimib.it

Francesco Archetti

francesco.archetti@unimib.it
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Extras: considerations on computational costs
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